Detection of Anomalous Microwave Emission in the Pleiades Reflection Nebula with Wilkinson Microwave Anisotropy Probe and the COSMOSOMAS Experiment

Génova-Santos, R.; Rebolo, R.; Rubiño-Martín, J. A.; López-Caraballo, C. H.; Hildebrandt, S. R.
Bibliographical reference

The Astrophysical Journal, Volume 743, Issue 1, article id. 67 (2011).

Advertised on:
12
2011
Number of authors
5
IAC number of authors
5
Citations
21
Refereed citations
18
Description
We present evidence for anomalous microwave emission (AME) in the Pleiades reflection nebula, using data from the seven-year release of the Wilkinson Microwave Anisotropy Probe and from the COSMOSOMAS (Cosmological Structures on Medium Angular Scales) experiment. The flux integrated in a 1° radius around R.A. = 56fdg24, decl. = 23fdg78 (J2000) is 2.15 ± 0.12 Jy at 22.8 GHz, where AME is dominant. COSMOSOMAS data show no significant emission, but allow one to set upper limits of 0.94 and 1.58 Jy (99.7% confidence level), respectively, at 10.9 and 14.7 GHz, which are crucial to pin down the AME spectrum at these frequencies, and to discard any other emission mechanisms which could have an important contribution to the signal detected at 22.8 GHz. We estimate the expected level of free-free emission from an extinction-corrected Hα template, while the thermal dust emission is characterized from infrared DIRBE data and extrapolated to microwave frequencies. When we deduct the contribution from these two components at 22.8 GHz, the residual flux, associated with AME, is 2.12 ± 0.12 Jy (17.7σ). The spectral energy distribution from 10 to 60 GHz can be accurately fitted with a model of electric dipole emission from small spinning dust grains distributed in two separated phases of molecular and atomic gas, respectively. The dust emissivity, calculated by correlating the 22.8 GHz data with 100 μm data, is found to be 4.36 ± 0.17 μK (MJy sr-1)-1, a value considerably lower than in typical AME clouds, which present emissivities of ~20 μK (MJy sr-1)-1, although higher than the 0.2 μK (MJy sr-1)-1 of the translucent cloud LDN 1780, where AME has recently been claimed. The physical properties of the Pleiades nebula, in particular its low extinction A V ~ 0.4, indicate that this is indeed a much less opaque object than those where AME has usually been studied. This fact, together with the broad knowledge of the stellar content of this region, provides an excellent testbed for AME characterization in physical conditions different from those generally explored up to now.
Related projects
Full-sky map showing the spatial distribution of the primary anisotropies of the Cosmic Microwave Background (generated 380,000 years after the Big Bang) derived from observations of the Planck satellite
Anisotropy of the Cosmic Microwave Background
The general goal of this project is to determine and characterize the spatial and spectral variations in the temperature and polarisation of the Cosmic Microwave Background in angular scales from several arcminutes to several degrees. The primordial matter density fluctuations which originated the structure in the matter distribution of the present
Rafael
Rebolo López