CoRoT LRa02_E2_0121: Neptune-size planet candidate turns into a hierarchical triple system with a giant primary

Tal-Or, L.; Santerne, A.; Mazeh, T.; Bouchy, F.; Moutou, C.; Alonso, R.; Gandolfi, D.; Aigrain, S.; Auvergne, M.; Barge, P.; Bonomo, A. S.; Bordé, P.; Deeg, H. J.; Ferraz-Mello, S.; Deleuil, M.; Dvorak, R.; Erikson, A.; Fridlund, M.; Gillon, M.; Guenther, E. W.; Guillot, T.; Hatzes, A.; Jorda, L.; Lammer, H.; Léger, A.; Llebaria, A.; Ollivier, M.; Pätzold, M.; Queloz, D.; Rauer, H.; Rouan, D.; Tsodikovich, Y.; Wuchterl, G.
Bibliographical reference

Astronomy and Astrophysics, Volume 534, id.A67

Advertised on:
10
2011
Number of authors
33
IAC number of authors
1
Citations
8
Refereed citations
6
Description
This paper presents the case of CoRoT LRa02_E2_0121, which was initially classified as a Neptune-size transiting-planet candidate on a relatively wide orbit of 36.3 days. Follow-up observations were performed with UVES, Sandiford, SOPHIE, and HARPS. These observations revealed a faint companion in the spectra. To find the true nature of the system we derived the radial velocities of the faint companion using TODMOR - a two-dimensional correlation technique, applied to the SOPHIE spectra. Modeling the lightcurve with EBAS we discovered a secondary eclipse with a depth of ~0.07%, indicating a diluted eclipsing binary. Combined MCMC modeling of the lightcurve and the radial velocities suggested that CoRoT LRa02_E2_0121 is a hierarchical triple system with an evolved G-type primary and an A-type:F-type grazing eclipsing binary. Such triple systems are difficult to discover. Based on observations made with the 1.93-m telescope at Observatoire de Haute-Provence (CNRS), France, the 3.6-m telescope at La Silla Observatory (ESO), Chile (program 184.C-0639), the VLT at Paranal Observatory (ESO), Chile (program 083.C-0690), and the 2.1-m Otto Struve telescope at McDonald Observatory, Texas, USA.
Related projects
Helio and Asteroseismology
Helio and Astero-Seismology and Exoplanets Search
The principal objectives of this project are: 1) to study the structure and dynamics of the solar interior, 2) to extend this study to other stars, 3) to search for extrasolar planets using photometric methods (primarily by transits of their host stars) and their characterization (using radial velocity information) and 4) the study of the planetary
Savita
Mathur