Bibcode
Ribas, I.; Perger, M.; Anglada-Escudé, G.; Morales, J. C.; Amado, P. J.; Caballero, J. A.; Quirrenbach, A.; Reiners, A.; Béjar, V. J. S.; Dreizler, S.; Galadí-Enríquez, D.; Hatzes, A. P.; Henning, Th.; Jeffers, S. V.; Kaminski, A.; Kürster, M.; Lafarga, M.; Montes, D.; Pallé, E.; Rodríguez-López, C.; Schweitzer, A.; Zapatero Osorio, M. R.; Zechmeister, M.
Bibliographical reference
Astronomy and Astrophysics
Advertised on:
5
2021
Journal
Citations
15
Refereed citations
13
Description
Context. The interaction between Earth-like exoplanets and the magnetic field of low-mass host stars are considered to produce weak emission signals at radio frequencies. A study using LOFAR data announced the detection of radio emission from the mid M-type dwarf GJ 1151 that could potentially arise from a close-in terrestrial planet. Recently, the presence of a 2.5-M⊕ planet orbiting GJ 1151 with a 2-day period has been claimed using 69 radial velocities (RVs) from the HARPS-N and HPF instruments.
Aims: We have obtained 70 new high-precision RV measurements in the framework of the CARMENES M-dwarf survey and use these data to confirm the presence of the claimed planet and to place limits on possible planetary companions in the GJ 1151 system.
Methods: We analysed the periodicities present in the combined RV data sets from all three instruments and calculated the detection limits for potential planets in short-period orbits.
Results: We cannot confirm the recently announced candidate planet and conclude that the 2-day signal in the HARPS-N and HPF data sets is most probably produced by a long-term RV variability, possibly arising from an outer planetary companion that has yet to be constrained. We calculate a 99.9% significance detection limit of 1.50 m s‒1 in the RV semi-amplitude, which places upper limits of 0.7 M⊕ and 1.2 M⊕ on the minimum masses of potential exoplanets with orbital periods of 1 and 5 days, respectively.
Aims: We have obtained 70 new high-precision RV measurements in the framework of the CARMENES M-dwarf survey and use these data to confirm the presence of the claimed planet and to place limits on possible planetary companions in the GJ 1151 system.
Methods: We analysed the periodicities present in the combined RV data sets from all three instruments and calculated the detection limits for potential planets in short-period orbits.
Results: We cannot confirm the recently announced candidate planet and conclude that the 2-day signal in the HARPS-N and HPF data sets is most probably produced by a long-term RV variability, possibly arising from an outer planetary companion that has yet to be constrained. We calculate a 99.9% significance detection limit of 1.50 m s‒1 in the RV semi-amplitude, which places upper limits of 0.7 M⊕ and 1.2 M⊕ on the minimum masses of potential exoplanets with orbital periods of 1 and 5 days, respectively.
Table A.1 is only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/cat/J/A+A/649/L12
Related projects
Very Low Mass Stars, Brown Dwarfs and Planets
Our goal is to study the processes that lead to the formation of low mass stars, brown dwarfs and planets and to characterize the physical properties of these objects in various evolutionary stages. Low mass stars and brown dwarfs are likely the most numerous type of objects in our Galaxy but due to their low intrinsic luminosity they are not so
Rafael
Rebolo López
Exoplanets and Astrobiology
The search for life in the universe has been driven by recent discoveries of planets around other stars (known as exoplanets), becoming one of the most active fields in modern astrophysics. The growing number of new exoplanets discovered in recent years and the recent advance on the study of their atmospheres are not only providing new valuable
Enric
Pallé Bago