Brown dwarf companion with a period of 4.6 yr interacting with the hot Jupiter CoRoT-20 b

Rey, J.; Bouchy, F.; Stalport, M.; Deleuil, M.; Hébrard, G.; Almenara, J. M.; Alonso, R.; Barros, S. C. C.; Bonomo, A. S.; Cazalet, G.; Delisle, J. B.; Díaz, R. F.; Fridlund, M.; Guenther, E. W.; Guillot, T.; Montagnier, G.; Moutou, C.; Lovis, C.; Queloz, D.; Santerne, A.; Udry, S.
Bibliographical reference

Astronomy and Astrophysics, Volume 619, id.A115, 7 pp.

Advertised on:
11
2018
Number of authors
21
IAC number of authors
2
Citations
11
Refereed citations
11
Description
We report the discovery of an additional substellar companion in the CoRoT-20 system based on six years of HARPS and SOPHIE radial velocity follow-up. CoRoT-20 c has a minimum mass of 17 ± 1 MJup and orbits the host star in 4.59 ± 0.05 yr, with an orbital eccentricity of 0.60 ± 0.03. This is the first identified system with an eccentric hot Jupiter and an eccentric massive companion. The discovery of the latter might be an indication of the migration mechanism of the hot Jupiter, via the Lidov-Kozai effect. We explore the parameter space to determine which configurations would trigger this type of interactions. Based on observations collected with the SOPHIE spectrograph on the 1.93-m telescope at Observatoire de Haute-Provence (CNRS), France, and with the HARPS spectrograph (Prog. 188.C-0779) at the 3.6-m telescope at La Silla Observatory.
Related projects
Helio and Asteroseismology
Helio and Astero-Seismology and Exoplanets Search
The principal objectives of this project are: 1) to study the structure and dynamics of the solar interior, 2) to extend this study to other stars, 3) to search for extrasolar planets using photometric methods (primarily by transits of their host stars) and their characterization (using radial velocity information) and 4) the study of the planetary
Savita
Mathur
Projects' name image
Exoplanets and Astrobiology
The search for life in the universe has been driven by recent discoveries of planets around other stars (known as exoplanets), becoming one of the most active fields in modern astrophysics. The growing number of new exoplanets discovered in recent years and the recent advance on the study of their atmospheres are not only providing new valuable
Enric
Pallé Bago