Variable stars in the Cetus dwarf spheroidal galaxy: population gradients and connections with the star formation history

Monelli, M.; Bernard, E. J.; Gallart, C.; Fiorentino, G.; Drozdovsky, I.; Aparicio, A.; Bono, G.; Cassisi, S.; Skillman, E. D.; Stetson, P. B.
Bibliographical reference

Monthly Notices of the Royal Astronomical Society, Volume 422, Issue 1, pp. 89-105.

Advertised on:
5
2012
Number of authors
10
IAC number of authors
4
Citations
26
Refereed citations
23
Description
We investigate the variable star content of the isolated, Local Group, dwarf spheroidal (dSph) galaxy Cetus. Multi-epoch, wide-field images collected with the Very Large Telescope/Visible Multiobject Spectrograph camera allowed us to detect 638 variable stars (630 RR Lyrae stars and eight anomalous Cepheids), 475 of which are new detections. We present a full catalogue of periods, amplitudes and mean magnitudes. Motivated by the recent discovery that the pulsational properties of the RR Lyrae stars in the Tucana dSph revealed the presence of a metallicity gradient within the oldest (>rsim10 Gyr old) stellar populations, we investigated the possibility of an analogous effect in Cetus. We found that, despite the obvious radial gradient in the horizontal branch and red giant branch morphologies, both becoming bluer on average for increasing distance from the centre of Cetus, the properties of the RR Lyrae stars are homogeneous within the investigated area (out to r˜ 15 arcmin), with no significant evidence of a radial gradient. We discuss this in connection with the star formation history previously derived for the two galaxies. The observed differences between these two systems show that even systems this small show a variety of early evolutionary histories. These differences could be due to different merger or accretion histories.
Related projects
A view of our Milky Way galaxy with its close neighbors the Magellanic Clouds
Galaxy Evolution in the Local Group
Galaxy formation and evolution is a fundamental Astrophysical problem. Its study requires “travelling back in time”, for which there are two complementary approaches. One is to analyse galaxy properties as a function of red-shift. Our team focuses on the other approach, called “Galactic Archaeology”. It is based on the determination of galaxy
Matteo
Monelli