Using active learning to improve quasar identification for the DESI spectra processing pipeline

Green, Dylan; Kirkby, David; Aguilar, J.; Ahlen, S.; Alexander, D. M.; Armengaud, E.; Bailey, S.; Bault, A.; Bianchi, D.; Brodzeller, A.; Brooks, D.; Claybaugh, T.; de Belsunce, R.; de la Macorra, A.; Doel, P.; Fawcett, V. A.; Ferraro, S.; Font-Ribera, A.; Forero-Romero, J. E.; Gaztañaga, E.; Gontcho, S. Gontcho A.; Gutierrez, G.; Ishak, M.; Juneau, S.; Kehoe, R.; Kisner, T.; Kremin, A.; Lambert, A.; Landriau, M.; Le Guillou, L.; Levi, M. E.; Manera, M.; Meisner, A.; Miquel, R.; Moustakas, J.; Myers, A. D.; Palanque-Delabrouille, N.; Prada, F.; Pérez-Ràfols, I.; Rossi, G.; Sanchez, E.; Saulder, C.; Schlegel, D.; Schubnell, M.; Seo, H.; Sinigaglia, F.; Sprayberry, D.; Tan, T.; Tarlé, G.; Weaver, B. A.; Youles, S.; Yu, J.; Zhou, R.; Zou, H.
Bibliographical reference

Journal of Cosmology and Astroparticle Physics

Advertised on:
10
2025
Number of authors
54
IAC number of authors
1
Citations
0
Refereed citations
0
Description
The Dark Energy Spectroscopic Instrument (DESI) survey uses an automatic spectral classification pipeline to classify spectra. QuasarNET is a convolutional neural network used as part of this pipeline originally trained using data from the Baryon Oscillation Spectroscopic Survey (BOSS). In this paper we implement an active learning algorithm to optimally select spectra to use for training a new version of the QuasarNET weights file using only DESI data, with the goal of improving classification accuracy. This active learning algorithm includes a novel outlier rejection step using a Self-Organizing Map to ensure we label spectra representative of the larger quasar sample observed in DESI. We perform two iterations of the active learning pipeline, assembling a final dataset of 5600 labeled spectra, a small subset of the approximately 1.3 million quasar targets in DESI's Data Release 1. When splitting the spectra into training and validation subsets we achieve similar performance to the previously trained weights file in completeness and purity calculated on the validation dataset but do so with less than one tenth of the amount of training data. The new weights also more consistently classify objects in the same way when used on unlabeled data compared to the old weights file. In the process of improving QuasarNET's classification accuracy we discovered a systemic error in QuasarNET's redshift estimation and used our findings to improve our understanding of QuasarNET's redshifts.
Type