Ubiquitous Horizontal Magnetic Fields in the Quiet Solar Photosphere as Revealed by HINODE Meaurements

Lites, Bruce W.; Socas Navarro, H.; Berger, T.; Frank, Z.; Shine, R.; Tarbell, T.; Title, A.; Ichimoto, K.; Katsukawa, Y.; Tsuneta, S.; Suematsu, Y.; Kubo, M.; Shimizu, T.; Nagata, S.; Hinode Team
Bibliographical reference

American Astronomical Society Meeting 210, #63.03; Bulletin of the American Astronomical Society, Vol. 39, p.171

Advertised on:
5
2007
Number of authors
15
IAC number of authors
0
Citations
1
Refereed citations
1
Description
Measurements with the HINODE Spectro-Polarimeter (SP) of the quiet Sun allow characterization of the weak, mixed-polarity magnetic flux at the highest angular resolution to date (0.3"), and with good polarimetric sensitivity(0.025% relative to the continuum). The image stabilization of the HINODE spacecraft allows long integrations with degradation of the image quality only by the evolution of the solar granulation. From the Stokes V profile measurements we find an average solar "Apparent Flux Density" of 14 Mx cm-2, with significant Stokes V signals at every position on the disk at all times. However, there are patches of meso-granular size (5-15") where the flux is very weak. At this high sensitivity, transverse fields produce measurable Stokes Q,U linear polarization signals over a majority of the area, with apparent transverse flux densities in the internetwork significantly larger than the corresponding longitudinal flux densities. When viewed at the center of the solar disk, the Stokes V signals (longitudinal fields) show a preference for occurrence in the intergranular lanes, and the Q,U signals occur preferably over the granule interiors, but neither association is exclusive. Hinode is an international project supported by JAXA, NASA, PPARC and ESA. We are grateful to the Hinode team for all their efforts in the design, build and operation of the mission.