Three dimensional structure of a regular sunspot from the inversion of IR Stokes profiles

Mathew, S. K.; Lagg, A.; Solanki, S. K.; Collados, M.; Borrero, J. M.; Berdyugina, S.; Krupp, N.; Woch, J.; Frutiger, C.
Bibliographical reference

Astronomy and Astrophysics, v.410, p.695-710 (2003)

Advertised on:
11
2003
Number of authors
9
IAC number of authors
1
Citations
93
Refereed citations
72
Description
The magnetic, thermal and velocity structure of a regular sunspot, observed close to solar disk center is presented. Spectropolarimetric data obtained with the Tenerife Infrared Polarimeter (TIP) in two infrared FeI lines at 15 648.5 Å and 15 652.8 Å are inverted employing a technique based on response functions to retrieve the atmospheric stratification at every point in the sunspot. In order to improve the results for the umbra, profiles of Zeeman split OH lines blending the FeI 15 652.8 Å are also consistently fit. Thus we obtain maps of temperature, line-of-sight velocity, magnetic field strength, inclination, and azimuth, as a function of both location within the sunspot and height in the atmosphere. We present these maps for an optical depth range between log tau5 = 0 and log tau5 = -1.5, where these lines provide accurate results. We find decreasing magnetic field strength with increasing height all over the sunspot, with a particularly large vertical field gradient of ~ -4 G km-1 in the umbra. We also observe the so called ``spine'' structures in the penumbra, i.e. extended radial features with a stronger and more vertical magnetic field than the surroundings. Also we found that the magnetic field zenith angle increases with height. From the velocity map it is clear that the Evershed flow avoids the spines and mostly concentrates in the more inclined intervening field. The field inclination at a few locations in the outer penumbra in lower layers goes beyond 90o. These locations coincide with the strongest flows in the velocity map.