A super-massive Neptune-sized planet

Naponiello, Luca; Mancini, Luigi; Sozzetti, Alessandro; Bonomo, Aldo S.; Morbidelli, Alessandro; Dou, Jingyao; Zeng, Li; Leinhardt, Zoe M.; Biazzo, Katia; Cubillos, Patricio E.; Pinamonti, Matteo; Locci, Daniele; Maggio, Antonio; Damasso, Mario; Lanza, Antonino F.; Lissauer, Jack J.; Collins, Karen A.; Carter, Philip J.; Jensen, Eric L. N.; Bignamini, Andrea; Boschin, Walter; Bouma, Luke G.; Ciardi, David R.; Cosentino, Rosario; Desidera, Silvano; Dumusque, Xavier; Fiorenzano, Aldo F. M.; Fukui, Akihiko; Giacobbe, Paolo; Gnilka, Crystal L.; Ghedina, Adriano; Guilluy, Gloria; Harutyunyan, Avet; Howell, Steve B.; Jenkins, Jon M.; Lund, Michael B.; Kielkopf, John F.; Lester, Katie V.; Malavolta, Luca; Mann, Andrew W.; Matson, Rachel A.; Matthews, Elisabeth C.; Nardiello, Domenico; Narita, Norio; Pace, Emanuele; Pagano, Isabella; Palle, Enric; Pedani, Marco; Seager, Sara; Schlieder, Joshua E.; Schwarz, Richard P.; Shporer, Avi; Twicken, Joseph D.; Winn, Joshua N.; Ziegler, Carl; Zingales, Tiziano
Bibliographical reference

Nature

Advertised on:
10
2023
Journal
Number of authors
56
IAC number of authors
4
Citations
17
Refereed citations
12
Description
Neptune-sized planets exhibit a wide range of compositions and densities, depending on factors related to their formation and evolution history, such as the distance from their host stars and atmospheric escape processes. They can vary from relatively low-density planets with thick hydrogen-helium atmospheres1,2 to higher-density planets with a substantial amount of water or a rocky interior with a thinner atmosphere, such as HD 95338 b (ref. 3), TOI-849 b (ref. 4) and TOI-2196 b (ref. 5). The discovery of exoplanets in the hot-Neptune desert6, a region close to the host stars with a deficit of Neptune-sized planets, provides insights into the formation and evolution of planetary systems, including the existence of this region itself. Here we show observations of the transiting planet TOI-1853 b, which has a radius of 3.46 ± 0.08 Earth radii and orbits a dwarf star every 1.24 days. This planet has a mass of 73.2 ± 2.7 Earth masses, almost twice that of any other Neptune-sized planet known so far, and a density of 9.7 ± 0.8 grams per cubic centimetre. These values place TOI-1853 b in the middle of the Neptunian desert and imply that heavy elements dominate its mass. The properties of TOI-1853 b present a puzzle for conventional theories of planetary formation and evolution, and could be the result of several proto-planet collisions or the final state of an initially high-eccentricity planet that migrated closer to its parent star.
Related projects
Projects' name image
Exoplanets and Astrobiology
The search for life in the universe has been driven by recent discoveries of planets around other stars (known as exoplanets), becoming one of the most active fields in modern astrophysics. The growing number of new exoplanets discovered in recent years and the recent advance on the study of their atmospheres are not only providing new valuable
Enric
Pallé Bago