Bibcode
Watkins, A. E.; Salo, H.; Laurikainen, E.; Díaz-García, S.; Comerón, S.; Janz, J.; Su, A. H.; Buta, R.; Athanassoula, E.; Bosma, A.; Ho, L. C.; Holwerda, B. W.; Kim, T.; Knapen, J. H.; Laine, S.; Menéndez-Delmestre, K.; Peletier, R. F.; Sheth, K.; Zaritsky, D.
Bibliographical reference
Astronomy and Astrophysics
Advertised on:
4
2022
Journal
Citations
18
Refereed citations
16
Description
Context. The Spitzer Survey of Stellar Structure in Galaxies (S4G) is a detailed study of over 2300 nearby galaxies in the near-infrared (NIR), which has been critical to our understanding of the detailed structures of nearby galaxies. Because the sample galaxies were selected only using radio-derived velocities, however, the survey favored late-type disk galaxies over lenticulars and ellipticals.
Aims: A follow-up Spitzer survey was conducted to rectify this bias, adding 465 early-type galaxies (ETGs) to the original sample, to be analyzed in a manner consistent with the initial survey. We present the data release of this ETG extension, up to the third data processing pipeline (P3): surface photometry.
Methods: We produce curves of growth and radial surface brightness profiles (with and without inclination corrections) using reduced and masked Spitzer IRAC 3.6 μm and 4.5 μm images produced through Pipelines 1 and 2, respectively. From these profiles, we derive the following integrated quantities: total magnitudes, stellar masses, concentration parameters, and galaxy size metrics. We showcase NIR scaling relations for ETGs among these quantities.
Results: We examine general trends across the whole S4G and ETG extension among our derived parameters, highlighting differences between ETGs and late-type galaxies (LTGs). The latter are, on average, more massive and more concentrated than LTGs, and subtle distinctions are seen among ETG morphological subtypes. We also derive the following scaling relations and compare them with previous results in visible light: mass-size (both half-light and isophotal), mass-concentration, mass-surface brightness (central, effective, and within 1 kpc), and mass-color.
Conclusions: We find good agreement with previous works, though some relations (e.g., mass-central surface brightness) will require more careful multicomponent decompositions to be fully understood. The relations between mass and isophotal radius and between mass and surface brightness within 1 kpc, in particular, show notably small scatter. The former provides important constraints on the limits of size growth in galaxies, possibly related to star formation thresholds, while the latter-particularly when paired with the similarly tight relation for LTGs-showcases the striking self-similarity of galaxy cores, suggesting they evolve little over cosmic time. All of the profiles and parameters described in this paper will be provided to the community via the NASA/IPAC database on a dedicated website.
Aims: A follow-up Spitzer survey was conducted to rectify this bias, adding 465 early-type galaxies (ETGs) to the original sample, to be analyzed in a manner consistent with the initial survey. We present the data release of this ETG extension, up to the third data processing pipeline (P3): surface photometry.
Methods: We produce curves of growth and radial surface brightness profiles (with and without inclination corrections) using reduced and masked Spitzer IRAC 3.6 μm and 4.5 μm images produced through Pipelines 1 and 2, respectively. From these profiles, we derive the following integrated quantities: total magnitudes, stellar masses, concentration parameters, and galaxy size metrics. We showcase NIR scaling relations for ETGs among these quantities.
Results: We examine general trends across the whole S4G and ETG extension among our derived parameters, highlighting differences between ETGs and late-type galaxies (LTGs). The latter are, on average, more massive and more concentrated than LTGs, and subtle distinctions are seen among ETG morphological subtypes. We also derive the following scaling relations and compare them with previous results in visible light: mass-size (both half-light and isophotal), mass-concentration, mass-surface brightness (central, effective, and within 1 kpc), and mass-color.
Conclusions: We find good agreement with previous works, though some relations (e.g., mass-central surface brightness) will require more careful multicomponent decompositions to be fully understood. The relations between mass and isophotal radius and between mass and surface brightness within 1 kpc, in particular, show notably small scatter. The former provides important constraints on the limits of size growth in galaxies, possibly related to star formation thresholds, while the latter-particularly when paired with the similarly tight relation for LTGs-showcases the striking self-similarity of galaxy cores, suggesting they evolve little over cosmic time. All of the profiles and parameters described in this paper will be provided to the community via the NASA/IPAC database on a dedicated website.
Full Table A.1, as well as all derived photometric properties and images (including masks and weight maps) are available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/cat/J/A+A/660/A69
Related projects
Spiral Galaxies: Evolution and Consequences
Our small group is well known and respected internationally for our innovative and important work on various aspects of the structure and evolution of nearby spiral galaxies. We primarily use observations at various wavelengths, exploiting synergies that allow us to answer the most pertinent questions relating to what the main properties of
Johan Hendrik
Knapen Koelstra