Spitzer Parallax of OGLE-2018-BLG-0596: A Low-mass-ratio Planet around an M Dwarf

Jung, Youn Kil; Gould, Andrew; Udalski, Andrzej; Sumi, Takahiro; Yee, Jennifer C.; Shvartzvald, Yossi; Zang, Weicheng; and; Han, Cheongho; Albrow, Michael D.; Chung, Sun-Ju; Hwang, Kyu-Ha; Ryu, Yoon-Hyun; Shin, In-Gu; Zhu, Wei; Cha, Sang-Mok; Kim, Dong-Jin; Kim, Hyoun-Woo; Kim, Seung-Lee; Lee, Chung-Uk; Lee, Dong-Joo; Lee, Yongseok; Park, Byeong-Gon; Pogge, Richard W.; (The KMTNet Collaboration; Mróz, Przemek; Szymański, Michał K.; Skowron, Jan; Poleski, Radek; Soszyński, Igor; Pietrukowicz, Paweł; Kozłowski, Szymon; Ulaczyk, Krzystof; Rybicki, Krzysztof A.; Iwanek, Patryk; Wrona, Marcin; (The OGLE Collaboration; Beichman, Charles A.; Bryden, Geoffery; Calchi Novati, Sebastiano; Carey, Sean; Gaudi, B. Scott; Henderson, Calen B.; (The Spitzer Team; Abe, Fumio; Barry, Richard; Bennett, David P.; Bond, Ian A.; Bhattacharya, Aparna; Donachie, Martin; Fukui, Akihiko; Hirao, Yuki; Itow, Yoshitaka; Kondo, Iona; Koshimoto, Naoki; Li, Man Cheung Alex; Matsubara, Yutaka; Miyazaki, Shota; Muraki, Yasushi; Nagakane, Masayuki; Ranc, Clément; Rattenbury, Nicholas J.; Suematsu, Haruno; Sullivan, Denis J.; Suzuki, Daisuke; Tristram, Paul J.; Yonehara, Atsunori; (The MOA Collaboration; Jacklin, Savannah; Penny, Matthew T.; Stassun, Keivan G.; (The UKIRT Microlensing Team; Fouqué, Pascal; Mao, Shude; Wang, Tianshu; (The CFHT Microlensing Collaboration
Bibliographical reference

The Astronomical Journal, Volume 158, Issue 1, article id. 28, 13 pp. (2019).

Advertised on:
7
2019
Number of authors
76
IAC number of authors
1
Citations
19
Refereed citations
18
Description
We report the discovery of a Spitzer microlensing planet OGLE-2018-BLG-0596Lb, with preferred planet-host mass ratio q ∼ 2 × 10‑4. The planetary signal, which is characterized by a short (∼1 day) “bump” on the rising side of the lensing light curve, was densely covered by ground-based surveys. We find that the signal can be explained by a bright source that fully envelops the planetary caustic, i.e., a “Hollywood” geometry. Combined with the source proper motion measured from Gaia, the Spitzer satellite parallax measurement makes it possible to precisely constrain the lens physical parameters. The preferred solution, in which the planet perturbs the minor image due to lensing by the host, yields a Uranus-mass planet with a mass of M p = 13.9 ± 1.6 M ⊕ orbiting a mid M-dwarf with a mass of M h = 0.23 ± 0.03 M ⊙. There is also a second possible solution that is substantially disfavored but cannot be ruled out, for which the planet perturbs the major image. The latter solution yields M p = 1.2 ± 0.2 M ⊕ and M h = 0.15 ± 0.02 M ⊙. By combining the microlensing and Gaia data together with a Galactic model, we find in either case that the lens lies on the near side of the Galactic bulge at a distance D L ∼ 6 ± 1 kpc. Future adaptive optics observations may decisively resolve the major image/minor image degeneracy.