Bibcode
Trelles Arjona, J. C.; Martínez González, M. J.; Ruiz Cobo, B.
Bibliographical reference
The Astrophysical Journal
Advertised on:
2
2023
Journal
Citations
3
Refereed citations
3
Description
The importance of the quiet-Sun magnetism is that it is always there to a greater or lesser extent, being a constant provider of energy, independently of the solar cycle phase. The open questions about the quiet-Sun magnetism include those related to its origin. Most people claim that the local dynamo action is the mechanism that causes it. This fact would imply that the quiet-Sun magnetism is nearly the same at any location over the solar surface and at any time. Many works claim that the quiet Sun does not have any variation at all, although a few of them raise doubt on this claim and find mild evidence of a cyclic variation in the the quiet-Sun magnetism. In this work, we detect clear variations in the internetwork magnetism both with latitude and solar cycle. In terms of latitude, we find an increase in the averaged magnetic fields toward the solar poles. We also find long-term variations in the averaged magnetic field at the disk center and solar poles, and both variations are almost anticorrelated. These findings do not support the idea that the local dynamo action is the unique factory of the quiet-Sun magnetism.
Related projects
Magnetism, Polarization and Radiative Transfer in Astrophysics
Magnetic fields pervade all astrophysical plasmas and govern most of the variability in the Universe at intermediate time scales. They are present in stars across the whole Hertzsprung-Russell diagram, in galaxies, and even perhaps in the intergalactic medium. Polarized light provides the most reliable source of information at our disposal for the
Tanausú del
Pino Alemán
Solar and Stellar Magnetism
Magnetic fields are at the base of star formation and stellar structure and evolution. When stars are born, magnetic fields brake the rotation during the collapse of the mollecular cloud. In the end of the life of a star, magnetic fields can play a key role in the form of the strong winds that lead to the last stages of stellar evolution. During
Tobías
Felipe García