Bibcode
Deheuvels, S.; García, R. A.; Chaplin, W. J.; Basu, S.; Antia, H. M.; Appourchaux, T.; Benomar, O.; Davies, G. R.; Elsworth, Y.; Gizon, L.; Goupil, M. J.; Reese, D. R.; Regulo, C.; Schou, J.; Stahn, T.; Casagrande, L.; Christensen-Dalsgaard, J.; Fischer, D.; Hekker, S.; Kjeldsen, H.; Mathur, S.; Mosser, B.; Pinsonneault, M.; Valenti, J.; Christiansen, J. L.; Kinemuchi, K.; Mullally, F.
Bibliographical reference
The Astrophysical Journal, Volume 756, Issue 1, article id. 19 (2012).
Advertised on:
9
2012
Journal
Citations
326
Refereed citations
244
Description
Rotation is expected to have an important influence on the structure and
the evolution of stars. However, the mechanisms of angular momentum
transport in stars remain theoretically uncertain and very complex to
take into account in stellar models. To achieve a better understanding
of these processes, we desperately need observational constraints on the
internal rotation of stars, which until very recently was restricted to
the Sun. In this paper, we report the detection of mixed
modes—i.e., modes that behave both as g modes in the core and as p
modes in the envelope—in the spectrum of the early red giant KIC
7341231, which was observed during one year with the Kepler spacecraft.
By performing an analysis of the oscillation spectrum of the star, we
show that its non-radial modes are clearly split by stellar rotation and
we are able to determine precisely the rotational splittings of 18
modes. We then find a stellar model that reproduces very well the
observed atmospheric and seismic properties of the star. We use this
model to perform inversions of the internal rotation profile of the
star, which enables us to show that the core of the star is rotating at
least five times faster than the envelope. This will shed new light on
the processes of transport of angular momentum in stars. In particular,
this result can be used to place constraints on the angular momentum
coupling between the core and the envelope of early red giants, which
could help us discriminate between the theories that have been proposed
over the last few decades.
Related projects
Helio and Astero-Seismology and Exoplanets Search
The principal objectives of this project are: 1) to study the structure and dynamics of the solar interior, 2) to extend this study to other stars, 3) to search for extrasolar planets using photometric methods (primarily by transits of their host stars) and their characterization (using radial velocity information) and 4) the study of the planetary
Savita
Mathur