Retrieval of the physical parameters of galaxies from WEAVE-StePS-like data using machine learning

Angthopo, J.; Granett, B. R.; La Barbera, F.; Longhetti, M.; Iovino, A.; Fossati, M.; Ditrani, F. R.; Costantin, L.; Zibetti, S.; Gallazzi, A.; Sánchez-Blázquez, P.; Tortora, C.; Spiniello, C.; Poggianti, B.; Vazdekis, A.; Balcells, M.; Bardelli, S.; Benn, C. R.; Bianconi, M.; Bolzonella, M.; Busarello, G.; Cassarà, L. P.; Corsini, E. M.; Cucciati, O.; Dalton, G.; Ferré-Mateu, A.; García-Benito, R.; González Delgado, R. M.; Gafton, E.; Gullieuszik, M.; Haines, C. P.; Iodice, E.; Ikhsanova, A.; Jin, S.; Knapen, J. H.; McGee, S.; Mercurio, A.; Merluzzi, P.; Morelli, L.; Moretti, A.; Murphy, D. N. A.; Pizzella, A.; Pozzetti, L.; Ragusa, R.; Trager, S. C.; Vergani, D.; Vulcani, B.; Talia, M.; Zucca, E.
Bibliographical reference

Astronomy and Astrophysics

Advertised on:
10
2024
Number of authors
49
IAC number of authors
4
Citations
0
Refereed citations
0
Description
Context. The William Herschel Telescope Enhanced Area Velocity Explorer (WEAVE) is a new, massively multiplexing spectrograph that allows us to collect about one thousand spectra over a 3 square degree field in one observation. The WEAVE Stellar Population Survey (WEAVE-StePS) in the next 5 years will exploit this new instrument to obtain high-S/N spectra for a magnitude-limited (IAB = 20.5) sample of ∼25 000 galaxies at moderate redshifts (z ≥ 0.3), providing insights into galaxy evolution in this as yet unexplored redshift range. Aims. We aim to test novel techniques for retrieving the key physical parameters of galaxies from WEAVE-StePS spectra using both photometric and spectroscopic (spectral indices) information for a range of noise levels and redshift values. Methods. We simulated ∼105 000 galaxy spectra assuming star formation histories with an exponentially declining star formation rate, covering a wide range of ages, stellar metallicities, specific star formation rates (sSFRs), and dust extinction values. We considered three redshifts (i.e. z = 0.3, 0.55, and 0.7), covering the redshift range that WEAVE-StePS will observe. We then evaluated the ability of the random forest and K-nearest neighbour algorithms to correctly predict the average age, metallicity, sSFR, dust attenuation, and time since the bulk of formation, assuming no measurement errors. We also checked how much the predictive ability deteriorates for different noise levels, with S/NI,obs = 10, 20, and 30, and at different redshifts. Finally, the retrieved sSFR was used to classify galaxies as part of the blue cloud, green valley, or red sequence. Results. We find that both the random forest and K-nearest neighbour algorithms accurately estimate the mass-weighted ages, u-band-weighted ages, and metallicities with low bias. The dispersion varies from 0.08–0.16 dex for age and 0.11–0.25 dex for metallicity, depending on the redshift and noise level. For dust attenuation, we find a similarly low bias and dispersion. For the sSFR, we find a very good constraining power for star-forming galaxies, log sSFR ≳ ‑11, where the bias is ∼0.01 dex and the dispersion is ∼0.10 dex. However, for more quiescent galaxies, with log sSFR ≲ ‑11, we find a higher bias, ranging from 0.61 to 0.86 dex, and a higher dispersion, ∼0.4 dex, depending on the noise level and redshift. In general, we find that the random forest algorithm outperforms the K-nearest neighbours. Finally, we find that the classification of galaxies as members of the green valley is successful across the different redshifts and S/Ns. Conclusions. We demonstrate that machine learning algorithms can accurately estimate the physical parameters of simulated galaxies for a WEAVE-StePS-like dataset, even at relatively low S/NI, obs = 10 per Å spectra with available ancillary photometric information. A more traditional approach, Bayesian inference, yields comparable results. The main advantage of using a machine learning algorithm is that, once trained, it requires considerably less time than other methods.
Related projects
Group members
Traces of Galaxy Formation: Stellar populations, Dynamics and Morphology
We are a large, diverse, and very active research group aiming to provide a comprehensive picture for the formation of galaxies in the Universe. Rooted in detailed stellar population analysis, we are constantly exploring and developing new tools and ideas to understand how galaxies came to be what we now observe.
Ignacio
Martín Navarro
Project Image
Spiral Galaxies: Evolution and Consequences
Our small group is well known and respected internationally for our innovative and important work on various aspects of the structure and evolution of nearby spiral galaxies. We primarily use observations at various wavelengths, exploiting synergies that allow us to answer the most pertinent questions relating to what the main properties of
Johan Hendrik
Knapen Koelstra