Reconstruction of global solar radiation time series from 1933 to 2013 at the Izaña Atmospheric Observatory

García, R. D.; Cuevas, E.; García, O. E.; Cachorro, V. E.; Pallé, P. L.; Bustos, J. J.; Romero-Campos, P. M.; de Frutos, A. M.
Bibliographical reference

Atmospheric Measurement Techniques, Volume 7, Issue 9, 2014, pp.3139-3150

Advertised on:
9
2014
Number of authors
8
IAC number of authors
1
Citations
16
Refereed citations
16
Description
This paper presents the reconstruction of the 80-year time series of daily global solar radiation (GSR) at the subtropical high-mountain Izaña Atmospheric Observatory (IZO) located in Tenerife (The Canary Islands, Spain). For this purpose, we combine GSR estimates from sunshine duration (SD) data using the Ångström-Prescott method over the 1933/1991 period, and GSR observations directly performed by pyranometers between 1992 and 2013. Since GSR measurements have been used as a reference, a strict quality control has been applied based on principles of physical limits and comparison with LibRadtran model. By comparing with high quality GSR measurements, the precision and consistency over time of GSR estimations from SD data have been successfully documented. We obtain an overall root mean square error (RMSE) of 9.2% and an agreement between the variances of GSR estimations and GSR measurements within 92%. Nonetheless, this agreement significantly increases when the GSR estimation is done considering different daily fractions of clear sky (FCS). In that case, RMSE is reduced by half, to about 4.5%, when considering percentages of FCS > 40% (~ 90% of days in the testing period). Furthermore, we prove that the GSR estimations can monitor the GSR anomalies in consistency with GSR measurements and, then, can be suitable for reconstructing solar radiation time series. The reconstructed IZO GSR time series between 1933 and 2013 confirms change points and periods of increases/decreases of solar radiation at Earth's surface observed at a global scale, such as the early brightening, dimming and brightening. This fact supports the consistency of the IZO GSR time series presented in this work, which may be a reference for solar radiation studies in the subtropical North Atlantic region.
Related projects
Helio and Asteroseismology
Helio and Astero-Seismology and Exoplanets Search
The principal objectives of this project are: 1) to study the structure and dynamics of the solar interior, 2) to extend this study to other stars, 3) to search for extrasolar planets using photometric methods (primarily by transits of their host stars) and their characterization (using radial velocity information) and 4) the study of the planetary
Savita
Mathur