Bibcode
Jimenez-Gallardo, A.; Massaro, F.; Balmaverde, B.; Paggi, A.; Capetti, A.; Forman, W. R.; Kraft, R. P.; Baldi, R. D.; Mahatma, V. H.; Mazzucchelli, C.; Missaglia, V.; Ricci, F.; Venturi, G.; Baum, S. A.; Liuzzo, E.; O'Dea, C. P.; Prieto, M. A.; Röttgering, H. J. A.; Sani, E.; Sparks, W. B.; Tremblay, G. R.; van Weeren, R. J.; Wilkes, B. J.; Harwood, J. J.; Mazzotta, P.; Kuraszkiewicz, J.
Bibliographical reference
The Astrophysical Journal
Advertised on:
5
2021
Journal
Citations
4
Refereed citations
4
Description
We present the analysis of X-ray and optical observations of gas filaments observed in the radio source 3CR 318.1, associated with NGC 5920, the brightest cluster galaxy (BCG) of MKW 3 s, a nearby cool core galaxy cluster. This work is one of the first X-ray and optical analyses of filaments in cool core clusters carried out using MUSE observations. We aim at identifying the main excitation processes responsible for the emission arising from these filaments. We complemented the optical VLT/MUSE observations, tracing the colder gas phase, with X-ray Chandra observations of the hotter highly ionized gas phase. Using the MUSE observations, we studied the emission line intensity ratios along the filaments to constrain the physical processes driving the excitation, and, using the Chandra observations, we carried out a spectral analysis of the gas along these filaments. We found a spatial association between the X-ray and optical morphology of these filaments, which are colder and have lower metal abundance than the surrounding intracluster medium (ICM), as already seen in other BCGs. Comparing with previous results from the literature for other BCGs, we propose that the excitation process that is most likely responsible for these filaments emission is a combination of star formation and shocks, with a likely contribution from self-ionizing, cooling ICM. Additionally, we conclude that the filaments most likely originated from AGN-driven outflows in the direction of the radio jet.
Related projects
The Central PARSEC of Galaxies using High Spatial Resolution Techniques
PARSEC is a multi-wavelength investigation of the central PARSEC of the nearest galaxies. We work on black-hole accretion and its most energetic manifestations: jets and hot spots, and on its circumnuclear environment conditions for star formation. We resort to the highest available angular resolution observations from gamma-rays to the centimetre
Almudena
Prieto Escudero