Properties of the redback millisecond pulsar binary 3FGL J0212.1+5320

Shahbaz, T.; Linares, M.; Breton, R. P.
Bibliographical reference

Monthly Notices of the Royal Astronomical Society, Volume 472, Issue 4, p.4287-4296

Advertised on:
12
2017
Number of authors
3
IAC number of authors
2
Citations
23
Refereed citations
21
Description
Linares et al. obtained quasi-simultaneous g΄-, r΄- and i΄-band light curves and an absorption-line radial velocity curve of the secondary star in the redback system 3FGL J0212.1+5320. The light curves showed two maxima and minima primarily due to the secondary star's ellipsoidal modulation, but with unequal maxima and minima. We fit these light curves and radial velocities with our X-ray binary model including either a dark solar-type star spot or a hotspot due to off-centre heating from an intrabinary shock to account for the unequal maxima. Both models give a radial velocity semi-amplitude and rotational broadening that agree with the observations. The observed secondary star's effective temperature is best matched with the value obtained using the hotspot model, which gives a neutron star and secondary star mass of M1 = 1.85 ^{+0.32}_{-0.26} M⊙ and M2 = 0.50 ^{+0.22}_{-0.19} M⊙, respectively.
Related projects
Black hole in outburst
Black holes, neutron stars, white dwarfs and their local environment
Accreting black-holes and neutron stars in X-ray binaries provide an ideal laboratory for exploring the physics of compact objects, yielding not only confirmation of the existence of stellar mass black holes via dynamical mass measurements, but also the best opportunity for probing high-gravity environments and the physics of accretion; the most
Montserrat
Armas Padilla