On the Possible Existence of Short-Period g-Mode Instabilities Powered by Nuclear-Burning Shells in Post-Asymptotic Giant Branch H-Deficient (PG1159-Type) Stars

Córsico, A. H.; Althaus, L. G.; Miller Bertolami, M. M.; González Pérez, J. M.; Kepler, S. O.
Bibliographical reference

The Astrophysical Journal, Volume 701, Issue 2, pp. 1008-1014 (2009).

Advertised on:
8
2009
Number of authors
5
IAC number of authors
1
Citations
25
Refereed citations
18
Description
We present a pulsational stability analysis of hot post-asymptotic giant branch (AGB) H-deficient pre-white dwarf stars with active He-burning shells. The stellar models employed are state-of-the-art equilibrium structures representative of PG1159 stars derived from the complete evolution of the progenitor stars, through the thermally pulsing AGB phase and born-again episode. On the basis of fully nonadiabatic pulsation computations, we confirmed theoretical evidence for the existence of a separate PG1159 instability strip in the log T eff-log g diagram characterized by short-period g-modes excited by the epsilon-mechanism. This instability strip partially overlaps the already known GW Vir instability strip of intermediate/long-period g-modes destabilized by the classical κ-mechanism acting on the partial ionization of C and/or O in the envelope of PG1159 stars. We found that PG1159 stars characterized by thick He-rich envelopes and located inside this overlapping region could exhibit both short and intermediate/long periods simultaneously. As a natural application of our results, we study the particular case of VV 47, a pulsating planetary nebula nucleus (PG1159 type) that is particularly interesting because it has been reported to exhibit a rich and complex pulsation spectrum including a series of unusually short pulsation periods. We found that the long periods exhibited by VV 47 can be readily explained by the classical κ-mechanism, while the observed short-period branch below ≈300 s could correspond to modes triggered by the He-burning shell through the epsilon-mechanism, although more observational work is needed to confirm the reality of these short-period modes. Were the existence of short-period g-modes in this star convincingly confirmed by future observations, VV 47 could be the first known pulsating star in which both the κ-mechanism and the epsilon-mechanism of mode driving are simultaneously operating.
Related projects
Helio and Asteroseismology
Helio and Astero-Seismology and Exoplanets Search
The principal objectives of this project are: 1) to study the structure and dynamics of the solar interior, 2) to extend this study to other stars, 3) to search for extrasolar planets using photometric methods (primarily by transits of their host stars) and their characterization (using radial velocity information) and 4) the study of the planetary
Savita
Mathur