Bibcode
Planck Collaboration; Aghanim, N.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Ballardini, M.; Banday, A. J.; Barreiro, R. B.; Bartolo, N.; Basak, S.; Benabed, K.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Burigana, C.; Calabrese, E.; Cardoso, J.-F.; Carron, J.; Chiang, H. C.; Colombo, L. P. L.; Comis, B.; Contreras, D.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Désert, F.-X.; Di Valentino, E.; Dickinson, C.; Diego, J. M.; Doré, O.; Ducout, A.; Dupac, X.; Dusini, S.; Elsner, F.; Enßlin, T. A.; Eriksen, H. K.; Fantaye, Y.; Finelli, F.; Forastieri, F.; Frailis, M.; Franceschi, E.; Frolov, A.; Galeotta, S.; Galli, S.; Ganga, K.; Génova-Santos, R. T.; Giraud-Héraud, Y.; González-Nuevo, J.; Górski, K. M.; Gruppuso, A.; Gudmundsson, J. E.; Hansen, F. K.; Henrot-Versillé, S.; Herranz, D.; Hivon, E.; Huang, Z.; Jaffe, A. H.; Jones, W. C.; Keihänen, E.; Keskitalo, R.; Kiiveri, K.; Krachmalnicoff, N.; Kunz, M.; Kurki-Suonio, H.; Lamarre, J.-M.; Langer, M.; Lasenby, A.; Lattanzi, M.; Lawrence, C. R.; Le Jeune, M.; Leahy, J. P.; Levrier, F.; Liguori, M.; Lilje, P. B.; Lindholm, V.; López-Caniego, M.; Ma, Y.-Z.; Macías-Pérez, J. F.; Maggio, G.; Maino, D.; Mandolesi, N.; Maris, M.; Martin, P. G.; Martínez-González, E.; Matarrese, S.; Mauri, N.; McEwen, J. D.; Meinhold, P. R.; Melchiorri, A.; Mennella, A. et al.
Bibliographical reference
Astronomy and Astrophysics, Volume 596, id.A110, 13 pp.
Advertised on:
12
2016
Journal
Citations
88
Refereed citations
78
Description
Parity-violating extensions of the standard electromagnetic theory cause
in vacuo rotation of the plane of polarization of propagating photons.
This effect, also known as cosmic birefringence, has an impact on the
cosmic microwave background (CMB) anisotropy angular power spectra,
producing non-vanishing T-B and E-B correlations that are otherwise null
when parity is a symmetry. Here we present new constraints on an
isotropic rotation, parametrized by the angle α, derived from
Planck 2015 CMB polarization data. To increase the robustness of our
analyses, we employ two complementary approaches, in harmonic space and
in map space, the latter based on a peak stacking technique. The two
approaches provide estimates for α that are in agreement within
statistical uncertainties and are very stable against several
consistency tests.Considering the T-B and E-B information jointly, we
find α = 0fdg31 ± 0fdg05 ({stat.) ± 0fdg28 (syst.)}
from the harmonic analysis and α = 0fdg35 ± 0fdg05 ({stat.)
± 0fdg28 (syst.)} from the stacking approach. These constraints
are compatible with no parity violation and are dominated by the
systematic uncertainty in the orientation of Planck's
polarization-sensitive bolometers.