Bibcode
Mercier, C.; Miville-Deschênes, M.-A.; McGehee, P.; Melin, J.-B.; Masi, S.; Matsumura, T.; Mann, R.; Mansoux, B.; Maffei, B.; Mandolesi, N.; MacTavish, C. J.; Maciaszek, T.; Longval, Y.; Macías-Pérez, J. F.; Leroy, C.; Leriche, B.; Lavabre, A.; Lawrence, C. R.; Lange, A. E.; Lasenby, A.; Lami, P.; Lagache, G.; Lamarre, J.-M.; Knox, L.; Kaplan, J.; Kneissl, R.; Jaffe, A. H.; Jones, W. C.; Huffenberger, K. M.; Hobson, M.; Holmes, W. A.; Hills, R.; Hivon, E.; Hildebrandt, S. R.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Helou, G.; Haissinski, J.; Harrison, D.; Griffin, M.; Guyot, G.; Górski, K. M.; Gratton, S.; Gispert, R.; Giraud-Héraud, Y.; Girard, D.; Ganga, K.; Giard, M.; Fosalba, P.; Fourmond, J.-J.; Douspis, M.; Efstathiou, G.; Dole, H.; Doré, O.; Désert, F.-X.; Dolag, K.; Coulais, A.; Cressiot, C.; Colombi, S.; Couchot, F.; Church, S.; Clements, D. L.; Chiang, C.; Charra, M.; Chary, R.-R.; Chamballu, A.; Charra, J.; Challinor, A.; Catalano, A.; Yurchenko, V.; Yvon, D.; Zacchei, A.; Wandelt, B. D.; White, S. D. M.; Wiesemeyer, H.; Woodcraft, A.; Vibert, D.; Wade, L. A.; Touze, F.; Tristram, M.; van Leeuwen, F.; Vibert, L.; Sunyaev, R.; Sygnet, J.-F.; Tauber, J. A.; Thum, C.; Torre, J.-P.; Shellard, P.; Spencer, L.; Starck, J.-L.; Stassi, P.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Savini, G.; Schaefer, B. M.; Rusholme, B.; Santos, D.; Roudier, G.; Rowan-Robinson, M. et al.
Bibliographical reference
Astronomy and Astrophysics, Volume 536, id.A4, 20 pp.
Advertised on:
12
2011
Journal
Citations
143
Refereed citations
127
Description
The Planck High Frequency Instrument (HFI) is designed to measure the
temperature and polarization anisotropies of the cosmic microwave
background and Galactic foregrounds in six ~30% bands centered at 100,
143, 217, 353, 545, and 857 GHz at an angular resolution of 10' (100
GHz), 7' (143 GHz), and 5' (217 GHz and higher). HFI has been operating
flawlessly since launch on 14 May 2009, with the bolometers reaching 100
mK the first week of July. The settings of the readout electronics,
including bolometer bias currents, that optimize HFI's noise performance
on orbit are nearly the same as the ones chosen during ground testing.
Observations of Mars, Jupiter, and Saturn have confirmed that the
optical beams and the time responses of the detection chains are in good
agreement with the predictions of physical optics modeling and
pre-launch measurements. The Detectors suffer from a high flux of cosmic
rays due to historically low levels of solar activity. As a result of
the redundancy of Planck's observation strategy, theremoval of a few
percent of data contaminated by glitches does not significantly affect
the instrumental sensitivity. The cosmic ray flux represents a
significant and variable heat load on the sub-Kelvin stage. Temporal
variation and the inhomogeneous distribution of the flux results in
thermal fluctuations that are a probable source of low frequency noise.
The removal of systematic effects in the time ordered data provides a
signal with an average noise equivalent power that is 70% of the goal in
the 0.6-2.5 Hz range. This is slightly higher than was achieved during
the pre-launch characterization but better than predicted in the early
phases of the project. The improvement over the goal is a result of the
low level of instrumental background loading achieved by the optical and
thermal design of the HFI.
Corresponding author: J.-M. Lamarre, jean-michel.lamarre [at] obspm.fr (jean-michel[dot]lamarre[at]obspm[dot]fr)