On the origin of M81 group extended dust emission

Davies, J. I.; Wilson, C. D.; Auld, R.; Baes, M.; Barlow, M. J.; Bendo, G. J.; Bock, J. J.; Boselli, A.; Bradford, M.; Buat, V.; Castro-Rodriguez, N.; Chanial, P.; Charlot, S.; Ciesla, L.; Clements, D. L.; Cooray, A.; Cormier, D.; Cortese, L.; Dwek, E.; Eales, S. A.; Elbaz, D.; Galametz, M.; Galliano, F.; Gear, W. K.; Glenn, J.; Gomez, H. L.; Griffin, M.; Hony, S.; Isaak, K. G.; Levenson, L. R.; Lu, N.; Madden, S.; O'Halloran, B.; Okumura, K.; Oliver, S.; Page, M. J.; Panuzzo, P.; Papageorgiou, A.; Parkin, T. J.; Perez-Fournon, I.; Pohlen, M.; Rangwala, N.; Rigby, E. E.; Roussel, H.; Rykala, A.; Sacchi, N.; Sauvage, M.; Schulz, B.; Schirm, M. R. P.; Smith, M. W. L.; Spinoglio, L.; Stevens, J. A.; Srinivasan, S.; Symeonidis, M.; Trichas, M.; Vaccari, M.; Vigroux, L.; Wozniak, H.; Wright, G. S.; Zeilinger, W. W.
Bibliographical reference

Monthly Notices of the Royal Astronomical Society, Volume 409, Issue 1, pp. 102-108.

Advertised on:
11
2010
Number of authors
60
IAC number of authors
2
Citations
23
Refereed citations
22
Description
Galactic cirrus emission at far-infrared wavelengths affects many extragalactic observations. Separating this emission from that associated with extragalactic objects is both important and difficult. In this paper we discuss a particular case, the M81 group, and the identification of diffuse structures prominent in the infrared, but also detected at optical wavelengths. The origin of these structures has previously been controversial, ranging from them being the result of a past interaction between M81 and M82 or due to more local Galactic emission. We show that over an order of a few arcmin scales, the far-infrared (Herschel 250μm) emission correlates spatially very well with a particular narrow-velocity (2-3 kms-1) component of the Galactic HI. We find no evidence that any of the far-infrared emission associated with these features actually originates in the M81 group. Thus we infer that the associated diffuse optical emission must be due to galactic light-back scattered off dust in our galaxy. Ultraviolet observations pick out young stellar associations around M81, but no detectable far-infrared emission. We consider in detail one of the Galactic cirrus features, finding that the far-infrared HI relation breaks down below arcmin scales and that at smaller scales there can be quite large dust-temperature variations.
Related projects
Project Image
Formation and Evolution of Galaxies: Observations in Infrared and other Wavelengths
This IAC research group carries out several extragalactic projects in different spectral ranges, using space as well as ground-based telescopes, to study the cosmological evolution of galaxies and the origin of nuclear activity in active galaxies. The group is a member of the international consortium which built the SPIRE instrument for the
Ismael
Pérez Fournon