Bibcode
Cabello, C.; Gallego, J.; Cardiel, N.; Pascual, S.; Guzmán, R.; Herrero, A.; Manrique, A.; Marín-Franch, A.; Mas-Hesse, J. M.; Rodríguez-Espinosa, J. M.; Salvador-Solé, E.
Bibliographical reference
Astronomy and Astrophysics
Advertised on:
3
2022
Journal
Citations
2
Refereed citations
2
Description
Context. Identifying very high-redshift galaxies is crucial for understanding the formation and evolution of galaxies. However, many questions still remain, and the uncertainty on the epoch of reionization is large. In this approach, some models allow a double-reionization scenario, although the number of confirmed detections at very high z is still too low to serve as observational proof.
Aims: The main goal of this project is studying whether we can search for Lyman-α emitters (LAEs) at z ∼ 9 using a narrow-band (NB) filter that was specifically designed by our team and was built for this experiment.
Methods: We used the NB technique to select candidates by measuring the flux excess due to the Lyα emission. The observations were taken with an NB filter (full width at half minimum of 11 nm and central wavelength λc = 1.257 μm) and the CIRCE near-infrared camera for the Gran Telescopio Canarias. We describe a data reduction procedure that was especially optimized to minimize instrumental effects. With a total exposure time of 18.3 h, the final NB image covers an area of ∼6.7 arcmin2, which corresponds to a comoving volume of 1.1 × 103 Mpc3 at z = 9.3.
Results: We pushed the source detection to its limit, which allows us to analyze an initial sample of 97 objects. We detail the different criteria we applied to select the candidates. The criteria included visual verifications in different photometric bands. None of the objects resembled a reliable LAE, however, and we found no robust candidate down to an emission-line flux of 2.9 × 10−16 erg s−1 cm−2, which corresponds to a Lyα luminosity limit of 3 × 1044 erg s−1. We derive an upper limit on the Lyα luminosity function at z ∼ 9 that agrees well with previous constraints. We conclude that deeper and wider surveys are needed to study the LAE population at the cosmic dawn.
Aims: The main goal of this project is studying whether we can search for Lyman-α emitters (LAEs) at z ∼ 9 using a narrow-band (NB) filter that was specifically designed by our team and was built for this experiment.
Methods: We used the NB technique to select candidates by measuring the flux excess due to the Lyα emission. The observations were taken with an NB filter (full width at half minimum of 11 nm and central wavelength λc = 1.257 μm) and the CIRCE near-infrared camera for the Gran Telescopio Canarias. We describe a data reduction procedure that was especially optimized to minimize instrumental effects. With a total exposure time of 18.3 h, the final NB image covers an area of ∼6.7 arcmin2, which corresponds to a comoving volume of 1.1 × 103 Mpc3 at z = 9.3.
Results: We pushed the source detection to its limit, which allows us to analyze an initial sample of 97 objects. We detail the different criteria we applied to select the candidates. The criteria included visual verifications in different photometric bands. None of the objects resembled a reliable LAE, however, and we found no robust candidate down to an emission-line flux of 2.9 × 10−16 erg s−1 cm−2, which corresponds to a Lyα luminosity limit of 3 × 1044 erg s−1. We derive an upper limit on the Lyα luminosity function at z ∼ 9 that agrees well with previous constraints. We conclude that deeper and wider surveys are needed to study the LAE population at the cosmic dawn.
Related projects
Physical properties and evolution of Massive Stars
This project aims at the searching, observation and analysis of massive stars in nearby galaxies to provide a solid empirical ground to understand their physical properties as a function of those key parameters that gobern their evolution (i.e. mass, spin, metallicity, mass loss, and binary interaction). Massive stars are central objects to
Sergio
Simón Díaz