The nature of proximate damped Lyman α systems

Ellison, Sara L.; Prochaska, J. Xavier; Hennawi, Joseph; Lopez, Sebastian; Usher, Christopher; Wolfe, Arthur M.; Russell, David M.; Benn, Chris R.
Bibliographical reference

Monthly Notices of the Royal Astronomical Society, Volume 406, Issue 3, pp. 1435-1459.

Advertised on:
8
2010
Number of authors
8
IAC number of authors
0
Citations
74
Refereed citations
70
Description
We present high-resolution echelle spectra of seven proximate damped Lyman α (PDLA) systems. The relative velocity separation of each PDLA from the background quasar is Δ V < 3000 km s-1. Combining our sample with a further nine PDLAs from the literature we compare the chemical properties of the proximate systems with a control sample of intervening DLAs. The PDLAs are usually excluded from statistical studies of absorption-selected galaxies and this sample constitutes the first systematic study of their chemical and ionization properties. Taken at face value, the sample of 16 PDLAs exhibits a wide range of metallicities, ranging from Z ~ 1/3 to ~ 1/1000 Zsolar, including the DLA with the lowest N(SiII)/N(HI) yet reported in the literature. However, some of these abundances may require ionization corrections. We find several pieces of evidence that indicate enhanced ionization and the presence of a hard ionizing spectrum in PDLAs which lead to properties that contrast with the intervening DLAs, particularly when the N(HI) is low. The abundances of Zn, Si and S in PDLAs with log N(HI) > 21, where ionization corrections are minimized, are systematically higher than the intervening population by a factor of around 3. We also find possible evidence for a higher fraction of NV absorbers amongst the PDLAs, although the statistics are still modest. 6/7 of our echelle sample show high ionization species (SiIV, CIV, OVI or NV) offset by >100 km s-1 from the main low ion absorption. We analyse fine-structure transitions of CII* and SiII* to constrain the PDLA distance from the quasi-stellar object (QSO). Lower limits range from tens of kpc to >160 kpc for the most stringent limit. We conclude that (at least some) PDLAs do exhibit different characteristics relative to the intervening population out to 3000 kms-1 (and possibly beyond). None the less, the PDLAs appear distinct from lower column density associated systems, and the inferred QSO-absorber separations mean they are unlikely to be associated with the QSO host. No trends with Δ V are found, although this requires a larger sample with better emission redshifts to confirm. We speculate that the PDLAs preferentially sample more massive galaxies in more highly clustered regions of the high-redshift Universe. Based on observations made with ESO Telescopes at the Paranal Observatories under program 080.A-0014(A). E-mail: sarae [at] uvic.ca (sarae[at]uvic[dot]ca)