Microlensing events indicate that super-Earth exoplanets are common in Jupiter-like orbits

Zang, Weicheng; Jung, Youn Kil; Yee, Jennifer C.; Hwang, Kyu-Ha; Yang, Hongjing; Udalski, Andrzej; Sumi, Takahiro; Gould, Andrew; Mao, Shude; Albrow, Michael D.; Chung, Sun-Ju; Han, Cheongho; Ryu, Yoon-Hyun; Shin, In-Gu; Shvartzvald, Yossi; Cha, Sang-Mok; Kim, Dong-Jin; Kim, Hyoun-Woo; Kim, Seung-Lee; Lee, Chung-Uk; Lee, Dong-Joo; Lee, Yongseok; Park, Byeong-Gon; Pogge, Richard W.; Zhang, Xiangyu; Kuang, Renkun; Wang, Hanyue; Zhang, Jiyuan; Hu, Zhecheng; Zhu, Wei; Mróz, Przemek; Skowron, Jan; Poleski, Radosław; Szymański, Michał K.; Soszyński, Igor; Pietrukowicz, Paweł; Kozłowski, Szymon; Ulaczyk, Krzysztof; Rybicki, Krzysztof A.; Iwanek, Patryk; Wrona, Marcin; Gromadzki, Mariusz; Abe, Fumio; Barry, Richard; Bennett, David P.; Bhattacharya, Aparna; Bond, Ian A.; Fujii, Hirosane; Fukui, Akihiko; Hamada, Ryusei; Hirao, Yuki; Silva, Stela Ishitani; Itow, Yoshitaka; Kirikawa, Rintaro; Koshimoto, Naoki; Matsubara, Yutaka; Miyazaki, Shota; Muraki, Yasushi; Olmschenk, Greg; Ranc, Clément; Rattenbury, Nicholas J.; Satoh, Yuki; Suzuki, Daisuke; Tomoyoshi, Mio; Tristram, Paul J.; Vandorou, Aikaterini; Yama, Hibiki; Yamashita, Kansuke
Bibliographical reference

Science

Advertised on:
4
2025
Journal
Number of authors
68
IAC number of authors
1
Citations
0
Refereed citations
0
Description
Exoplanets classified as super-Earths are commonly observed on short-period orbits, close to their host stars, but their abundance on wider orbits is poorly constrained. Gravitational microlensing is sensitive to exoplanets on wide orbits. We observed the microlensing event OGLE-2016-BLG-0007, which indicates an exoplanet with a planet-to-star mass ratio roughly double the Earth-Sun mass ratio, on an orbit longer than Saturn's. We combined this event with a larger sample from a microlensing survey to determine the distribution of mass ratios for planets on wide orbits. We infer that there are ~0.35 super-Earth planets per star on Jupiter-like orbits. The observations are most consistent with a bimodal distribution, with separate peaks for super-Earths and gas giants. We suggest that this reflects differences in their formation processes.
Type