Magnetic field diagnostics of prominences with the Mg II k line 3D Stokes inversions versus traditional methods

Štěpán, Jiří; del Pino Alemán, Tanausú; Trujillo Bueno, Javier
Bibliographical reference

Astronomy and Astrophysics

Advertised on:
9
2024
Number of authors
3
IAC number of authors
2
Citations
2
Refereed citations
1
Description
The Mg II k resonance line is commonly used for diagnosing the solar chromosphere. We theoretically investigated its intensity and polarization in solar prominences, taking 3D radiative transfer and Hanle and Zeeman effects into account. We used an optically thick 3D model representative of a solar prominence and applied several inversion methods to the synthetic Stokes profiles, clarifying their pros and cons for inferring prominence magnetic fields. We conclude that the self-consistent 3D inversion with radiative transfer is necessary to determine the magnetic field vector, although its geometry cannot be inferred with full fidelity. We also demonstrate that more traditional methods, such as those based on the weak field approximation or the constant-property slab assumption, can offer useful information under certain conditions.
Related projects
Project Image
Magnetism, Polarization and Radiative Transfer in Astrophysics
Magnetic fields pervade all astrophysical plasmas and govern most of the variability in the Universe at intermediate time scales. They are present in stars across the whole Hertzsprung-Russell diagram, in galaxies, and even perhaps in the intergalactic medium. Polarized light provides the most reliable source of information at our disposal for the
Tanausú del
Pino Alemán