Bibcode
Pereira, M. E. S.; Palmese, A.; Varga, T. N.; McClintock, T.; Soares-Santos, M.; Burgad, J.; Annis, J.; Farahi, A.; Lin, H.; Choi, A.; DeRose, J.; Esteves, J.; Gatti, M.; Gruen, D.; Hartley, W. G.; Hoyle, B.; Jeltema, T.; MacCrann, N.; Roodman, A.; Sánchez, C.; Shin, T.; von der Linden, A.; Zuntz, J.; Abbott, T. M. C.; Aguena, M.; Avila, S.; Bertin, E.; Bhargava, S.; Bridle, S. L.; Brooks, D.; Burke, D. L.; Carnero Rosell, A.; Carrasco Kind, M.; Carretero, J.; Costanzi, M.; da Costa, L. N.; Desai, S.; Diehl, H. T.; Dietrich, J. P.; Doel, P.; Estrada, J.; Everett, S.; Flaugher, B.; Fosalba, P.; Frieman, J.; García-Bellido, J.; Gaztanaga, E.; Gerdes, D. W.; Gruendl, R. A.; Gschwend, J.; Gutierrez, G.; Hinton, S. R.; Hollowood, D. L.; Honscheid, K.; James, D. J.; Kuehn, K.; Kuropatkin, N.; Lahav, O.; Lima, M.; Maia, M. A. G.; March, M.; Marshall, J. L.; Melchior, P.; Menanteau, F.; Miquel, R.; Ogando, R. L. C.; Paz-Chinchón, F.; Plazas, A. A.; Romer, A. K.; Sanchez, E.; Scarpine, V.; Schubnell, M.; Serrano, S.; Sevilla-Noarbe, I.; Smith, M.; Suchyta, E.; Swanson, M. E. C.; Tarle, G.; Wechsler, R. H.; Weller, J.; Zhang, Y.; DES Collaboration
Bibliographical reference
Monthly Notices of the Royal Astronomical Society
Advertised on:
9
2020
Citations
11
Refereed citations
9
Description
We present the weak-lensing mass calibration of the stellar-mass-based μ⋆ mass proxy for redMaPPer galaxy clusters in the Dark Energy Survey Year 1. For the first time, we are able to perform a calibration of μ⋆ at high redshifts, z > 0.33. In a blinded analysis, we use ∼6000 clusters split into 12 subsets spanning the ranges 0.1 ≤ z < 0.65 and μ⋆ up to ${\sim} 5.5 \times 10^{13} \, \mathrm{M}_{\odot }$ , and infer the average masses of these subsets through modelling of their stacked weak-lensing signal. In our model, we account for the following sources of systematic uncertainty: shear measurement and photometric redshift errors, miscentring, cluster-member contamination of the source sample, deviations from the Navarro-Frenk-White halo profile, halo triaxiality, and projection effects. We use the inferred masses to estimate the joint mass-μ⋆-z scaling relation given by $\langle M_{200c} | \mu _{\star },z \rangle = M_0 (\mu _{\star }/5.16\times 10^{12} \, \mathrm{M_{\odot }})^{F_{\mu _{\star }}} ((1+z)/1.35)^{G_z}$ . We find $M_0= (1.14 \pm 0.07) \times 10^{14} \, \mathrm{M_{\odot }}$ with $F_{\mu _{\star }}= 0.76 \pm 0.06$ and Gz = -1.14 ± 0.37. We discuss the use of μ⋆ as a complementary mass proxy to the well-studied richness λ for: (i) exploring the regimes of low z, λ < 20 and high λ, z ∼ 1; and (ii) testing systematics such as projection effects for applications in cluster cosmology.
Related projects
Molecular Gas and Dust in Galaxies Across Cosmic Time
Two of the most fundamental questions in astrophysics are the conversion of molecular gas into stars and how this physical process is a function of environments on all scales, ranging from planetary systems, stellar clusters, galaxies to galaxy clusters. The main goal of this internal project is to get insight into the formation and evolution of
Helmut
Dannerbauer