LHS 1815b: The First Thick-disk Planet Detected by TESS

Gan, Tianjun; Shporer, Avi; Livingston, John H.; Collins, Karen A.; Mao, Shude; Trani, Alessandro A.; Gandolfi, Davide; Hirano, Teruyuki; Luque, Rafael; Stassun, Keivan G.; Ziegler, Carl; Howell, Steve B.; Hellier, Coel; Irwin, Jonathan M.; Winters, Jennifer G.; Anderson, David R.; Briceño, César; Law, Nicholas; Mann, Andrew W.; Bonfils, Xavier; Astudillo-Defru, Nicola; Jensen, Eric L. N.; Anglada-Escudé, Guillem; Ricker, George R.; Vanderspek, Roland; Latham, David W.; Seager, Sara; Winn, Joshua N.; Jenkins, Jon M.; Furesz, Gabor; Guerrero, Natalia M.; Quintana, Elisa; Twicken, Joseph D.; Caldwell, Douglas A.; Tenenbaum, Peter; Huang, Chelsea X.; Rowden, Pamela; Rojas-Ayala, Bárbara
Bibliographical reference

The Astronomical Journal

Advertised on:
4
2020
Number of authors
38
IAC number of authors
1
Citations
27
Refereed citations
25
Description
We report the first discovery of a thick-disk planet, LHS 1815b (TOI-704b, TIC 260004324), detected in the Transiting Exoplanet Survey Satellite (TESS) survey. LHS 1815b transits a bright (V = 12.19 mag, K = 7.99 mag) and quiet M dwarf located 29.87 ± 0.02 pc away with a mass of 0.502 ± 0.015 M☉ and a radius of 0.501 ± 0.030 R☉. We validate the planet by combining space- and ground-based photometry, spectroscopy, and imaging. The planet has a radius of 1.088 ± 0.064 R⊕ with a 3σ mass upper limit of 8.7 M⊕. We analyze the galactic kinematics and orbit of the host star LHS 1815 and find that it has a large probability (Pthick/Pthin = 6482) to be in the thick disk with a much higher expected maximal height (Zmax = 1.8 kpc) above the Galactic plane compared with other TESS planet host stars. Future studies of the interior structure and atmospheric properties of planets in such systems using, for example, the upcoming James Webb Space Telescope, can investigate the differences in formation efficiency and evolution for planetary systems between different Galactic components (thick disks, thin disks, and halo).
Related projects
Projects' name image
Exoplanets and Astrobiology
The search for life in the universe has been driven by recent discoveries of planets around other stars (known as exoplanets), becoming one of the most active fields in modern astrophysics. The growing number of new exoplanets discovered in recent years and the recent advance on the study of their atmospheres are not only providing new valuable
Enric
Pallé Bago