K2-111: an old system with two planets in near-resonance

Mortier, A.; Zapatero Osorio, M. R.; Malavolta, L.; Alibert, Y.; Rice, K.; Lillo-Box, J.; Vanderburg, A.; Oshagh, M.; Buchhave, L.; Adibekyan, V.; Delgado Mena, E.; Lopez-Morales, M.; Charbonneau, D.; Sousa, S. G.; Lovis, C.; Affer, L.; Allende Prieto, C.; Barros, S. C. C.; Benatti, S.; Bonomo, A. S.; Boschin, W.; Bouchy, F.; Cabral, A.; Collier Cameron, A.; Cosentino, R.; Cristiani, S.; Demangeon, O. D. S.; Di Marcantonio, P.; D'Odorico, V.; Dumusque, X.; Ehrenreich, D.; Figueira, P.; Fiorenzano, A.; Ghedina, A.; González Hernández, J. I.; Haldemann, J.; Harutyunyan, A.; Haywood, R. D.; Latham, D. W.; Lavie, B.; Lo Curto, G.; Maldonado, J.; Manescau, A.; Martins, C. J. A. P.; Mayor, M.; Mégevand, D.; Mehner, A.; Micela, G.; Molaro, P.; Molinari, E.; Nunes, N. J.; Pepe, F. A.; Palle, E.; Phillips, D.; Piotto, G.; Pinamonti, M.; Poretti, E.; Riva, M.; Rebolo, R.; Santos, N. C.; Sasselov, D.; Sozzetti, A.; Suárez Mascareño, A.; Udry, S.; West, R. G.; Watson, C. A.; Wilson, T. G.
Bibliographical reference

Monthly Notices of the Royal Astronomical Society

Advertised on:
10
2020
Number of authors
67
IAC number of authors
7
Citations
27
Refereed citations
27
Description
This paper reports on the detailed characterization of the K2-111 planetary system with K2, WASP, and ASAS-SN photometry, as well as high-resolution spectroscopic data from HARPS-N and ESPRESSO. The host, K2-111, is confirmed to be a mildly evolved (log g = 4.17), iron-poor ([Fe/H] = -0.46), but alpha-enhanced ([α/Fe]=0.27), chromospherically quiet, very old thick disc G2 star. A global fit, performed by using PyORBIT, shows that the transiting planet, K2-111 b, orbits with a period Pb = 5.3518 ± 0.0004 d and has a planet radius of $1.82^{+0.11}_{-0.09}$ R⊕ and a mass of $5.29^{+0.76}_{-0.77}$ M⊕, resulting in a bulk density slightly lower than that of the Earth. The stellar chemical composition and the planet properties are consistent with K2-111 b being a terrestrial planet with an iron core mass fraction lower than the Earth. We announce the existence of a second signal in the radial velocity data that we attribute to a non-transiting planet, K2-111 c, with an orbital period of 15.6785 ± 0.0064 d, orbiting in near-3:1 mean motion resonance with the transiting planet, and a minimum planet mass of 11.3 ± 1.1 M⊕. Both planet signals are independently detected in the HARPS-N and ESPRESSO data when fitted separately. There are potentially more planets in this resonant system, but more well-sampled data are required to confirm their presence and physical parameters.
Related projects
Discovery of a system of super-Earths orbiting the star HD 176986 with about 5.7 and 9.2 Earth masses.
Very Low Mass Stars, Brown Dwarfs and Planets
Our goal is to study the processes that lead to the formation of low mass stars, brown dwarfs and planets and to characterize the physical properties of these objects in various evolutionary stages. Low mass stars and brown dwarfs are likely the most numerous type of objects in our Galaxy but due to their low intrinsic luminosity they are not so
Rafael
Rebolo López
Projects' name image
Exoplanets and Astrobiology
The search for life in the universe has been driven by recent discoveries of planets around other stars (known as exoplanets), becoming one of the most active fields in modern astrophysics. The growing number of new exoplanets discovered in recent years and the recent advance on the study of their atmospheres are not only providing new valuable
Enric
Pallé Bago
spectrum of mercury lamp
Chemical Abundances in Stars
Stellar spectroscopy allows us to determine the properties and chemical compositions of stars. From this information for stars of different ages in the Milky Way, it is possible to reconstruct the chemical evolution of the Galaxy, as well as the origin of the elements heavier than boron, created mainly in stellar interiors. It is also possible to
Carlos
Allende Prieto