Bibcode
Irwin, Judith A.; Wilson, C. D.; Wiegert, T.; Bendo, G. J.; Warren, B. E.; Wang, Q. D.; Israel, F. P.; Serjeant, S.; Knapen, J. H.; Brinks, E.; Tilanus, R. P. J.; van der Werf, P.; Mühle, S.
Bibliographical reference
Monthly Notices of the Royal Astronomical Society, Volume 410, Issue 3, pp. 1423-1440.
Advertised on:
1
2011
Citations
25
Refereed citations
23
Description
We have made the first map of CO(J= 3-2) emission covering the disc of
the edge-on galaxy, NGC 4631, which is known for its spectacular gaseous
halo. The strongest emission, which we model with a Gaussian ring,
occurs within a radius of 5 kpc. Weaker disc emission is detected out to
radii of 12 kpc, the most extensive molecular component yet seen in this
galaxy. From comparisons with infrared data, we find that CO(J= 3-2)
emission more closely follows the hot dust component, rather than the
cold dust, consistent with it being a good tracer of star formation. The
first maps of R3-2/1-0, H2 mass surface density
and star formation efficiency (SFE) have been made for the inner 2.4 kpc
radius region. Only 20 per cent of the star formation occurs in this
region and excitation conditions are typical of galaxy discs, rather
than of central starbursts. The SFE suggests long gas consumption
time-scales (>109 yr).
The velocity field is dominated by a steeply rising rotation curve in
the region of the central molecular ring followed by a flatter curve in
the disc. A very steep gradient in the rotation curve is observed at the
nucleus, providing the first evidence for a central concentration of
mass: Mdyn= 5 × 107 M&sun; within
a radius of 282 pc. The velocity field shows anomalous features
indicating the presence of molecular outflows; one of them is associated
with a previously observed CO(J= 1-0) expanding shell. Consistent with
these outflows is the presence of a thick (z up to 1.4 kpc) CO(J= 3-2)
disc. We suggest that the interaction between NGC 4631 and its
companion(s) has agitated the disc and also initiated star formation
which was likely higher in the past than it is now. These may be
necessary conditions for seeing prominent haloes.
Related projects
Spiral Galaxies: Evolution and Consequences
Our small group is well known and respected internationally for our innovative and important work on various aspects of the structure and evolution of nearby spiral galaxies. We primarily use observations at various wavelengths, exploiting synergies that allow us to answer the most pertinent questions relating to what the main properties of
Johan Hendrik
Knapen Koelstra