J-PLUS: Beyond Spectroscopy. III. Stellar Parameters and Elemental-abundance Ratios for Five Million Stars from DR3

Angulo, Raul E.; Sodré, Laerte; Dupke, Renato; Ederoclite, Alessandro; Alcaniz, Jailson; Vázquez Ramió, Héctor; Varela, Jesús; Moles, Mariano; Marín-Franch, Antonio; López-Sanjuan, Carlos; Hernández-Monteagudo, Carlos; Cenarro, Javier; Cristóbal-Hornillos, David; Daflon, Simone; Jiménez-Esteban, Fran; Cruz, Patricia; Galindo-Guil, F. J.; Coelho, Paula; Fan, Zhou; Liu, Jifeng; Hong, Jihye; Gu, Hongrui; Lee, Young Sun; Yuan, Haibo; Xiao, Kai; Beers, Timothy C.; Huang, Yang
Bibliographical reference

The Astrophysical Journal

Advertised on:
10
2024
Number of authors
27
IAC number of authors
1
Citations
0
Refereed citations
0
Description
We present a catalog of stellar parameters (effective temperature T eff, surface gravity , age, and metallicity [Fe/H]) and elemental-abundance ratios ([C/Fe], [Mg/Fe], and [α/Fe]) for some five million stars (4.5 million dwarfs and 0.5 million giant stars) in the Milky Way, based on stellar colors from the Javalambre Photometric Local Universe Survey (J-PLUS) DR3 and Gaia EDR3. These estimates are obtained through the construction of a large spectroscopic training set with parameters and abundances adjusted to uniform scales, and trained with a kernel principal component analysis. Owing to the seven narrow/medium-band filters employed by J-PLUS, we obtain precisions in the abundance estimates that are as good as or better than those derived from medium-resolution spectroscopy for stars covering a wide range of the parameter space: 0.10–0.20 dex for [Fe/H] and [C/Fe], and 0.05 dex for [Mg/Fe] and [α/Fe]. Moreover, systematic errors due to the influence of molecular carbon bands on previous photometric-metallicity estimates (which only included two narrow/medium-band blue filters) have now been removed, resulting in photometric-metallicity estimates down to [Fe/H] ∼ ‑4.0, with typical uncertainties of 0.40 dex and 0.25 dex for dwarfs and giants, respectively. This large photometric sample should prove useful for the exploration of the assembly and chemical-evolution history of our Galaxy.