Homogeneous analysis of globular clusters from the APOGEE survey with the BACCHUS code. I. The northern clusters

Masseron, T.; García-Hernández, D. A.; Mészáros, Sz.; Zamora, O.; Dell'Agli, F.; Allende Prieto, C.; Edvardsson, B.; Shetrone, M.; Plez, B.; Fernández-Trincado, J. G.; Cunha, K.; Jönsson, H.; Geisler, D.; Beers, T. C.; Cohen, R. E.
Bibliographical reference

Astronomy and Astrophysics, Volume 622, id.A191, 16 pp.

Advertised on:
2
2019
Number of authors
15
IAC number of authors
5
Citations
76
Refereed citations
72
Description
Aims: We seek to provide abundances of a large set of light and neutron-capture elements homogeneously analyzed that cover a wide range of metallicity to constrain globular cluster (GC) formation and evolution models. Methods: We analyzed a large sample of 885 GCs giants from the SDSS IV-Apache Point Observatory Galactic Evolution Experiment (APOGEE) survey. We used the Cannon results to separate the red giant branch and asymptotic giant branch stars, not only allowing for a refinement of surface gravity from isochrones, but also providing an independent H-band spectroscopic method to distinguish stellar evolutionary status in clusters. We then used the Brussels Automatic Code for Characterizing High accUracy Spectra (BACCHUS) to derive metallicity, microturbulence, macroturbulence, many light-element abundances, and the neutron-capture elements Nd and Ce for the first time from the APOGEE GCs data. Results: Our independent analysis helped us to diagnose issues regarding the standard analysis of the APOGEE DR14 for low-metallicity GC stars. Furthermore, while we confirm most of the known correlations and anticorrelation trends (Na-O, Mg-Al, C-N), we discover that some stars within our most metal-poor clusters show an extreme Mg depletion and some Si enhancement. At the same time, these stars show some relative Al depletion, displaying a turnover in the Mg-Al diagram. These stars suggest that Al has been partially depleted in their progenitors by very hot proton-capture nucleosynthetic processes. Furthermore, we attempted to quantitatively correlate the spread of Al abundances with the global properties of GCs. We find an anticorrelation of the Al spread against clusters metallicity and luminosity, but the data do not allow us to find clear evidence of a dependence of N against metallicity in the more metal-poor clusters. Conclusions: Large and homogeneously analyzed samples from ongoing spectroscopic surveys unveil unseen chemical details for many clusters, including a turnover in the Mg-Al anticorrelation, thus yielding new constrains for GCs formation/evolution models. Full Table 2 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/622/A191
Related projects
Project Image
Nucleosynthesis and molecular processes in the late stages of Stellar Evolution
Low- to intermediate-mass (M < 8 solar masses, Ms) stars represent the majority of stars in the Cosmos. They finish their lives on the Asymptotic Giant Branch (AGB) - just before they form planetary nebulae (PNe) - where they experience complex nucleosynthetic and molecular processes. AGB stars are important contributors to the enrichment of the
Domingo Aníbal
García Hernández
spectrum of mercury lamp
Chemical Abundances in Stars
Stellar spectroscopy allows us to determine the properties and chemical compositions of stars. From this information for stars of different ages in the Milky Way, it is possible to reconstruct the chemical evolution of the Galaxy, as well as the origin of the elements heavier than boron, created mainly in stellar interiors. It is also possible to
Carlos
Allende Prieto