Bibcode
Barbato, D.; Pinamonti, M.; Sozzetti, A.; Biazzo, K.; Benatti, S.; Damasso, M.; Desidera, S.; Lanza, A. F.; Maldonado, J.; Mancini, L.; Scandariato, G.; Affer, L.; Andreuzzi, G.; Bignamini, A.; Bonomo, A. S.; Borsa, F.; Carleo, I.; Claudi, R.; Cosentino, R.; Covino, E.; Fiorenzano, A. F. M.; Giacobbe, P.; Harutyunyan, A.; Knapic, C.; Leto, G.; Lorenzi, V.; Maggio, A.; Malavolta, L.; Micela, G.; Molinari, E.; Molinaro, M.; Nascimbeni, V.; Pagano, I.; Pedani, M.; Piotto, G.; Poretti, E.; Rainer, M.
Bibliographical reference
Astronomy and Astrophysics
Advertised on:
9
2020
Journal
Citations
10
Refereed citations
10
Description
Context. With the growth of comparative exoplanetology, it is becoming increasingly clear that investigating the relationships between inner and outer planets plays a key role in discriminating between competing formation and evolution models. To do so, it is important to probe the inner region of systems that host long-period giants in search of undetected lower-mass planetary companions.
Aims: In this work, we present our results on the K-dwarf star BD-11 4672, which is already known to host a long-period giant planet, as the first output of a subsample of the GAPS programme specifically aimed at assessing the impact of inefficient migration of planets formed beyond the snowline by searching for Neptune-mass and super-Earth planetary companions of known longer-period giants.
Methods: We used the high-precision HARPS-N observations of BD-11 4672 in conjunction with time series taken from the literature in order to search for additional inner planetary signals to be fitted using differential evolution Markov chain Monte Carlo. The long-term stability of the new orbital solutions was tested with N-body dynamical simulations.
Results: We report the detection of BD-11 4672 c, a new Neptune-mass planet with an orbital period of 74.20-0.08+0.06 d, eccentricity of 0.40-0.15+0.13, semimajor axis of 0.30 ± 0.01 au, and minimum mass 15.37-2.81+2.97 M⊕, orbiting slightly outside the inner edge of the optimistic circumstellar habitable zone. In order to assess its impact on the dynamical stability of the habitable zone, we computed the angular momentum deficit of the system, showing that planet c has a severe negative impact on the stability of possible additional lower-mass temperate planets. The BD-11 4672 system is notable for its architecture, hosting both a long-period giant planet and an inner lower-mass planet, the latter being one of the most eccentric Neptune-mass planets known at similar periods.
Aims: In this work, we present our results on the K-dwarf star BD-11 4672, which is already known to host a long-period giant planet, as the first output of a subsample of the GAPS programme specifically aimed at assessing the impact of inefficient migration of planets formed beyond the snowline by searching for Neptune-mass and super-Earth planetary companions of known longer-period giants.
Methods: We used the high-precision HARPS-N observations of BD-11 4672 in conjunction with time series taken from the literature in order to search for additional inner planetary signals to be fitted using differential evolution Markov chain Monte Carlo. The long-term stability of the new orbital solutions was tested with N-body dynamical simulations.
Results: We report the detection of BD-11 4672 c, a new Neptune-mass planet with an orbital period of 74.20-0.08+0.06 d, eccentricity of 0.40-0.15+0.13, semimajor axis of 0.30 ± 0.01 au, and minimum mass 15.37-2.81+2.97 M⊕, orbiting slightly outside the inner edge of the optimistic circumstellar habitable zone. In order to assess its impact on the dynamical stability of the habitable zone, we computed the angular momentum deficit of the system, showing that planet c has a severe negative impact on the stability of possible additional lower-mass temperate planets. The BD-11 4672 system is notable for its architecture, hosting both a long-period giant planet and an inner lower-mass planet, the latter being one of the most eccentric Neptune-mass planets known at similar periods.
Based on observations made with the Italian Telescopio Nazionale Galileo (TNG) operated by the Fundación Galileo Galilei (FGG) of the Istituto Nazionale di Astrofisica (INAF) at the Observatorio del Roque de los Muchachos (La Palma, Canary Islands, Spain).
Related projects
Minor Bodies of the Solar System
This project studies the physical and compositional properties of the so-called minor bodies of the Solar System, that includes asteroids, icy objects, and comets. Of special interest are the trans-neptunian objects (TNOs), including those considered the most distant objects detected so far (Extreme-TNOs or ETNOs); the comets and the comet-asteroid
Julia de
León Cruz