Bibcode
Deeg, H. J.; Ocaña, B.; Kozhevnikov, V. P.; Charbonneau, D.; O'Donovan, F. T.; Doyle, L. R.
Bibliographical reference
Astronomy and Astrophysics, Volume 480, Issue 2, 2008, pp.563-571
Advertised on:
3
2008
Journal
Citations
48
Refereed citations
42
Description
Aims:Our objective is to elucidate the physical process that causes the
observed observed-minus-calculated (O-C) behavior in the M4.5/M4.5
binary CM Dra and to test for any evidence of a third body around the CM
Dra system. Methods: New eclipse minimum timings of CM Dra were
obtained between the years 2000 and 2007. The O-C times of the system
are fitted against several functions, representing different physical
origins of the timing variations. Results: Using our
observational data in conjunction with published timings going back to
1977, a clear non-linearity in O-C times is apparent. An analysis using
model-selection statistics gives about equal weight to a parabolic and
to a sinusoidal fitting function. Attraction from a third body, either
at large distance in a quasi-constant constellation across the years of
observations or from a body on a shorter orbit generating periodicities
in O-C times is the most likely source of the observed O-C times. The
white dwarf GJ 630.1B, a proper motion companion of CM Dra, can however
be rejected as the responsible third body. Also, no further evidence of
the short-periodic planet candidate described by Deeg et al. (2000,
A&A, 358, L5) is found, whereas other mechanisms, such as period
changes from stellar winds or Applegate's mechanism can be rejected. Conclusions: A third body, being either a few-Jupiter-mass object with
a period of 18.5 ± 4.5 years or an object in the mass range of
1.5 M_jup to 0.1 M&sun; with periods of hundreds to thousands
of years is the most likely origin of the observed minimum timing
behavior.
Related projects
Helio and Astero-Seismology and Exoplanets Search
The principal objectives of this project are: 1) to study the structure and dynamics of the solar interior, 2) to extend this study to other stars, 3) to search for extrasolar planets using photometric methods (primarily by transits of their host stars) and their characterization (using radial velocity information) and 4) the study of the planetary
Savita
Mathur