ExoMol molecular line lists - XXXIII. The spectrum of Titanium Oxide

McKemmish, Laura K.; Masseron, Thomas; Hoeijmakers, H. Jens; Pérez-Mesa, Víctor; Grimm, Simon L.; Yurchenko, Sergei N.; Tennyson, Jonathan
Bibliographical reference

Monthly Notices of the Royal Astronomical Society, Volume 488, Issue 2, p.2836-2854

Advertised on:
9
2019
Number of authors
7
IAC number of authors
2
Citations
169
Refereed citations
155
Description
Accurate line lists are crucial for correctly modelling a variety of astrophysical phenomena, including stellar photospheres and the atmospheres of extrasolar planets. This paper presents a new line database TOTO for the main isotopologues of titanium oxide (TiO): ^{46}Ti^{16}O, ^{47}Ti^{16}O, ^{48}Ti^{16}O, ^{49}Ti^{16}O, and ^{50}Ti^{16}O. The ^{48}Ti^{16}O line list contains transitions with wave-numbers up to 30 000 cm-1, i.e. longwards of 0.33 μm. The TOTO line list includes all dipole-allowed transitions between 13 low-lying electronic states (X 3Δ, a1Δ, d 1Σ+, E 3Π, A 3Φ, B3Π, C 3Δ, b 1Π, c1Φ, f1Δ, e 1Σ+). Ab initio potential energy curves (PECs) are computed at the icMRCI level and combined with spin-orbit and other coupling curves. These PECs and couplings are iteratively refined to match known empirical energy levels. Accurate line intensities are generated using ab initio dipole moment curves. The TOTO line lists are appropriate for temperatures below 5000 K and contain 30 million transitions for ^{48}Ti^{16}O; it is made available in electronic form via the CDS data centre and via www.exomol.com. Tests of the line lists show greatly improved agreement with observed spectra for objects such as M-dwarfs GJ876 and GL581.
Related projects
Project Image
Nucleosynthesis and molecular processes in the late stages of Stellar Evolution
Low- to intermediate-mass (M < 8 solar masses, Ms) stars represent the majority of stars in the Cosmos. They finish their lives on the Asymptotic Giant Branch (AGB) - just before they form planetary nebulae (PNe) - where they experience complex nucleosynthetic and molecular processes. AGB stars are important contributors to the enrichment of the
Domingo Aníbal
García Hernández
spectrum of mercury lamp
Chemical Abundances in Stars
Stellar spectroscopy allows us to determine the properties and chemical compositions of stars. From this information for stars of different ages in the Milky Way, it is possible to reconstruct the chemical evolution of the Galaxy, as well as the origin of the elements heavier than boron, created mainly in stellar interiors. It is also possible to
Carlos
Allende Prieto