Bibcode
Fernández-Trincado, José G.; Mennickent, Ronald; Cabezas, Mauricio; Zamora, Olga; Martell, Sarah L.; Beers, Timothy C.; Placco, Vinicius M.; Nataf, David M.; Mészáros, Szabolcs; Minniti, Dante; Schleicher, Dominik R. G.; Tang, Baitian; Pérez-Villegas, Angeles; Robin, Annie C.; Reylé, Céline
Bibliographical reference
Astronomy and Astrophysics
Advertised on:
11
2019
Journal
Citations
25
Refereed citations
25
Description
We report the serendipitous discovery of a nitrogen-rich, mildly metal-poor ([Fe/H] = -1.08) giant star in a single-lined spectroscopic binary system found in the SDSS-IV Apache Point Observatory Galactic Evolution Experiment (APOGEE-2) survey, Data Release 14 (DR14). Previous work has assumed that two percent of halo giants with unusual elemental abundances have been evaporated from globular clusters, but other origins for their abundance signatures, including binary mass transfer, must also be explored. We present the results of an abundance reanalysis of the APOGEE-2 high-resolution near-infrared spectrum of 2M12451043+1217401 with the Brussels Automatic Stellar Parameter (BACCHUS) automated spectral analysis code. We manually re-derive the main element families, namely light elements (C, N), elements (O, Mg, Si), the iron-peak element (Fe), s-process element (Ce), and light odd-Z element (Al). Our analysis confirms the N-rich nature of 2M12451043+1217401, which has a [N/Fe] ratio of +0.69, and shows that the abundances of C and Al are slightly discrepant from those of a typical mildly metal-poor red giant branch star, but exhibit Mg, Si, O and s-process abundances (Ce) of typical field stars. We also detect a particularly large variability in the radial velocity of this star over the period of the APOGEE-2 observations; the most likely orbit fit to the radial velocity data has a period of 730.89 ± 106.86 days, a velocity semi-amplitude of 9.92 ± 0.14 km s-1, and an eccentricity of ̃0.1276 ± 0.1174. These data support the hypothesis of a binary companion, which has probably been polluted by a now-extinct asymptotic giant branch star.
Related projects
Nucleosynthesis and molecular processes in the late stages of Stellar Evolution
Low- to intermediate-mass (M < 8 solar masses, Ms) stars represent the majority of stars in the Cosmos. They finish their lives on the Asymptotic Giant Branch (AGB) - just before they form planetary nebulae (PNe) - where they experience complex nucleosynthetic and molecular processes. AGB stars are important contributors to the enrichment of the
Domingo Aníbal
García Hernández