Detection of Carbon Monoxide's 4.6 Micron Fundamental Band Structure in WASP-39b's Atmosphere with JWST NIRSpec G395H

Grant, David; Lothringer, Joshua D.; Wakeford, Hannah R.; Alam, Munazza K.; Alderson, Lili; Bean, Jacob L.; Benneke, Björn; Désert, Jean-Michel; Daylan, Tansu; Flagg, Laura; Hu, Renyu; Inglis, Julie; Kirk, James; Kreidberg, Laura; López-Morales, Mercedes; Mancini, Luigi; Mikal-Evans, Thomas; Molaverdikhani, Karan; Palle, Enric; Rackham, Benjamin V.; Redfield, Seth; Stevenson, Kevin B.; Valenti, Jeff A.; Wallack, Nicole L.; Aggarwal, Keshav; Ahrer, Eva-Maria; Crossfield, Ian J. M.; Crouzet, Nicolas; Iro, Nicolas; Nikolov, Nikolay K.; Wheatley, Peter J.; JWST Transiting Exoplanet Community ERS Team
Bibliographical reference

The Astrophysical Journal

Advertised on:
5
2023
Number of authors
32
IAC number of authors
1
Citations
11
Refereed citations
10
Description
Carbon monoxide (CO) is predicted to be the dominant carbon-bearing molecule in giant planet atmospheres and, along with water, is important for discerning the oxygen and therefore carbon-to-oxygen ratio of these planets. The fundamental absorption mode of CO has a broad, double-branched structure composed of many individual absorption lines from 4.3 to 5.1 μm, which can now be spectroscopically measured with JWST. Here we present a technique for detecting the rotational sub-band structure of CO at medium resolution with the NIRSpec G395H instrument. We use a single transit observation of the hot Jupiter WASP-39b from the JWST Transiting Exoplanet Community Early Release Science (JTEC ERS) program at the native resolution of the instrument (R ~ 2700) to resolve the CO absorption structure. We robustly detect absorption by CO, with an increase in transit depth of 264 ± 68 ppm, in agreement with the predicted CO contribution from the best-fit model at low resolution. This detection confirms our theoretical expectations that CO is the dominant carbon-bearing molecule in WASP-39b's atmosphere and further supports the conclusions of low C/O and supersolar metallicities presented in the JTEC ERS papers for WASP-39b.
Related projects
Projects' name image
Exoplanets and Astrobiology
The search for life in the universe has been driven by recent discoveries of planets around other stars (known as exoplanets), becoming one of the most active fields in modern astrophysics. The growing number of new exoplanets discovered in recent years and the recent advance on the study of their atmospheres are not only providing new valuable
Enric
Pallé Bago