Bibcode
DOI
Betancort-Rijo, J. E.; Sanchez-Conde, Miguel A.; Prada, Francisco; Patiri, Santiago G.
Bibliographical reference
The Astrophysical Journal, Volume 649, Issue 2, pp. 579-590.
Advertised on:
10
2006
Journal
Citations
16
Refereed citations
14
Description
In the present work we describe the formalism necessary to derive the
properties of dark matter halos beyond 2 virial radii using the
spherical collapse model (without shell crossing) and provide the
framework for the theoretical prediction presented by Prada et al. We
show in detail how to obtain within this model the probability
distribution for the spherically averaged enclosed density at any radius
P(δ,r). Using this probability distribution, we compute the most
probable and the mean density profiles, which turn out to differ
considerably from each other. We also show how to obtain the typical
profile, as well as the probability distribution and mean profile for
the spherically averaged radial velocity. Three probability
distributions are obtained: The first is derived using a simple
assumption; that is, if Q is the virial radius in Lagrangian
coordinates, then the enclosed linear contrast δl(q)
must satisfy the condition that
δl(q=Q)=δvir, where
δvir is the linear density contrast within the virial
radius Rvir at the moment of virialization. Then we introduce
an additional constraint to obtain a more accurate P(δ,r) that
reproduces to a higher degree of precision the distribution of the
spherically averaged enclosed density found in the simulations. This new
constraint is that, for a given q>Q,
δl(q)<δvir. A third probability
distribution, the most accurate, is obtained imposing the strongest
constraint that δl(q)<δvir for all
q>Q, which means that there are no radii larger than Rvir
where the density contrast is larger than that used to define the virial
radius. Finally, we compare our theoretical predictions for the mean
density and the mean velocity profiles with the results found in the
simulations.