Bibcode
Martins, C. J. A. P.; Cooke, R.; Liske, J.; Murphy, M. T.; Noterdaeme, P.; Schmidt, T. M.; Alcaniz, J. S.; Alves, C. S.; Balashev, S.; Cristiani, S.; Di Marcantonio, P.; Génova Santos, R.; Gonçalves, R. S.; González Hernández, J. I.; Maiolino, R.; Marconi, A.; Marques, C. M. J.; Melo e Sousa, M. A. F.; Nunes, N. J.; Origlia, L.; Péroux, C.; Vinzl, S.; Zanutta, A.
Bibliographical reference
Experimental Astronomy
Advertised on:
2
2024
Journal
Citations
11
Refereed citations
7
Description
State-of-the-art 19th century spectroscopy led to the discovery of quantum mechanics, and 20th century spectroscopy led to the confirmation of quantum electrodynamics. State-of-the-art 21st century astrophysical spectrographs, especially ANDES at ESO's ELT, have another opportunity to play a key role in the search for, and characterization of, the new physics which is known to be out there, waiting to be discovered. We rely on detailed simulations and forecast techniques to discuss four important examples of this point: big bang nucleosynthesis, the evolution of the cosmic microwave background temperature, tests of the universality of physical laws, and a real-time model-independent mapping of the expansion history of the universe (also known as the redshift drift). The last two are among the flagship science drivers for the ELT. We also highlight what is required for the ESO community to be able to play a meaningful role in 2030s fundamental cosmology and show that, even if ANDES only provides null results, such `minimum guaranteed science' will be in the form of constraints on key cosmological paradigms: these are independent from, and can be competitive with, those obtained from traditional cosmological probes.
Related projects
Chemical Abundances in Stars
Stellar spectroscopy allows us to determine the properties and chemical compositions of stars. From this information for stars of different ages in the Milky Way, it is possible to reconstruct the chemical evolution of the Galaxy, as well as the origin of the elements heavier than boron, created mainly in stellar interiors. It is also possible to
Carlos
Allende Prieto