Bibcode
MAGIC Collaboration; Ahnen, M. L.; Ansoldi, S.; Antonelli, L. A.; Arcaro, C.; Babić, A.; Banerjee, B.; Bangale, P.; Barres de Almeida, U.; Barrio, J. A.; Becerra González, J.; Bednarek, W.; Bernardini, E.; Berti, A.; Bhattacharyya, W.; Biasuzzi, B.; Biland, A.; Blanch, O.; Bonnefoy, S.; Bonnoli, G.; Carosi, R.; Carosi, A.; Chatterjee, A.; Colak, S. M.; Colin, P.; Colombo, E.; Contreras, J. L.; Cortina, J.; Covino, S.; Cumani, P.; Da Vela, P.; Dazzi, F.; De Angelis, A.; De Lotto, B.; de Oña Wilhelmi, E.; Di Pierro, F.; Doert, M.; Domínguez, A.; Dominis Prester, D.; Dorner, D.; Doro, M.; Einecke, S.; Eisenacher Glawion, D.; Elsaesser, D.; Engelkemeier, M.; Fallah Ramazani, V.; Fernández-Barral, A.; Fidalgo, D.; Fonseca, M. V.; Font, L.; Fruck, C.; Galindo, D.; García López, R. J.; Garczarczyk, M.; Garrido, D.; Gaug, M.; Giammaria, P.; Godinović, N.; Gora, D.; Guberman, D.; Hadasch, D.; Hahn, A.; Hassan, T.; Hayashida, M.; Herrera, J.; Hose, J.; Hrupec, D.; Inada, T.; Ishio, K.; Konno, Y.; Kubo, H.; Kushida, J.; Kuveždić, D.; Lelas, D.; Lindfors, E.; Lombardi, S.; Longo, F.; López, M.; Maggio, C.; Majumdar, P.; Makariev, M.; Maneva, G.; Manganaro, M.; Mannheim, K.; Maraschi, L.; Mariotti, M.; Martínez, M.; Mazin, D.; Menzel, U.; Minev, M.; Mirzoyan, R.; Moralejo, A.; Moreno, V.; Moretti, E.; Neustroev, V.; Niedzwiecki, A.; Nievas Rosillo, M.; Nilsson, K.; Ninci, D.; Nishijima, K. et al.
Bibliographical reference
The Astrophysical Journal Supplement Series, Volume 232, Issue 1, article id. 9, 17 pp. (2017).
Advertised on:
9
2017
Citations
36
Refereed citations
27
Description
Spontaneous breaking of Lorentz symmetry at energies on the order of the
Planck energy or lower is predicted by many quantum gravity theories,
implying non-trivial dispersion relations for the photon in vacuum.
Consequently, gamma-rays of different energies, emitted simultaneously
from astrophysical sources, could accumulate measurable differences in
their time of flight until they reach the Earth. Such tests have been
carried out in the past using fast variations of gamma-ray flux from
pulsars, and more recently from active galactic nuclei and gamma-ray
bursts. We present new constraints studying the gamma-ray emission of
the galactic Crab Pulsar, recently observed up to TeV energies by the
Major Atmospheric Gamma-ray Imaging Cherenkov (MAGIC) collaboration. A
profile likelihood analysis of pulsar events reconstructed for energies
above 400 GeV finds no significant variation in arrival time as their
energy increases. Ninety-five percent CL limits are obtained on the
effective Lorentz invariance violating energy scale at the level of
{E}{{QG}1}> 5.5× {10}17 {GeV}
(4.5× {10}17 {GeV}) for a linear, and
{E}{{QG}2}> 5.9× {10}10 {GeV}
(5.3× {10}10 {GeV}) for a quadratic scenario, for the
subluminal and the superluminal cases, respectively. A substantial part
of this study is dedicated to calibration of the test statistic, with
respect to bias and coverage properties. Moreover, the limits take into
account systematic uncertainties, which are found to worsen the
statistical limits by about 36%–42%. Our constraints would have
been much more stringent if the intrinsic pulse shape of the pulsar
between 200 GeV and 400 GeV was understood in sufficient detail and
allowed inclusion of events well below 400 GeV.
Related projects
Particle Astrophysics
The MAGIC Collaboration is integrated by 20 research institutes and university departments from Armenia, Bulgaria, Finland, Germany, Italy, Poland, Spain, Switzerland and USA. The collaboration comprises two 17m diameter telescopes, located at the Roque de los Muchachos Observatory, designed to measure the Cherenkov radiation associated with
Ramón
García López