Acharya, B. S.; Aramo, C.; Babic, A.; Barrio, J. A.; Baushev, A.; Becker Tjus, J.; Berge, D.; Bohacova, M.; Bonardi, A.; Brown, A.; Bugaev, V.; Bulik, T.; Burton, M.; Busetto, G.; Caraveo, P.; Carosi, R.; Carr, J.; Chadwick, P.; Chudoba, J.; Conforti, V.; Connaughton, V.; Contreras, J. L.; Cotter, G.; Dazzi, F.; De Franco, A.; de la Calle, I.; de los Reyes Lopez, R.; De Lotto, B.; De Palma, F.; Di Girolamo, T.; Di Giulio, C.; Di Pierro, F.; Dournaux, J.-L.; Dwarkadas, V.; Ebr, J.; Egberts, K.; Fesquet, M.; Fleischhack, H.; Font, L.; Fontaine, G.; Förster, A.; Fuessling, M.; Garcia, B.; Garcia López, R.; Garczarczyk, M.; Gargano, F.; Garrido, D.; Gaug, M.; Giglietto, N.; Giordano, F.; Giuliani, A.; Godinovic, N.; Gonzalez, M. M.; Grabarczyk, T.; Hassan, T.; Hörandel, J.; Hrabovsky, M.; Hrupec, D.; Humensky, T. B.; Huovelin, J.; Jamrozy, M.; Janecek, P.; Kaaret, P. E.; Katz, U.; Kaufmann, S.; Khélifi, B.; Kluźniak, W.; Kocot, J.; Komin, N.; Kubo, H.; Kushida, J.; Lamanna, G.; Lee, W. H.; Lenain, J.-P.; Lohse, T.; Lombardi, S.; López-Coto, R.; López-Oramas, A.; Lucarelli, F.; Maccarone, M. C.; Maier, G.; Majumdar, P.; Malaguti, G.; Mandat, D.; Mazziotta, M. N.; Meagher, K.; Mirabal, N.; Morselli, A.; Moulin, E.; Niemiec, J.; Nievas, M.; Nishijima, K.; Nosek, D.; Nunio, F.; Ohishi, M.; Ohm, S.; Ong, R. A.; Orito, R.; Otte, N.; Palatka, M. et al.
Bibliographical reference
Astroparticle Physics, Volume 62, p. 152-164.
Advertised on:
3
2015
Journal
Citations
6
Refereed citations
5
Description
Supernova remnants (SNRs) are among the most important targets for
γ-ray observatories. Being prominent non-thermal sources, they are
very likely responsible for the acceleration of the bulk of Galactic
cosmic rays (CRs). To firmly establish the SNR paradigm for the origin
of cosmic rays, it should be confirmed that protons are indeed
accelerated in, and released from, SNRs with the appropriate flux and
spectrum. This can be done by detailed theoretical models which account
for microphysics of acceleration and various radiation processes of
hadrons and leptons. The current generation of Cherenkov telescopes has
insufficient sensitivity to constrain theoretical models. A new
facility, the Cherenkov Telescope Array (CTA), will have superior
capabilities and may finally resolve this long standing issue of
high-energy astrophysics. We want to assess the capabilities of CTA to
reveal the physics of various types of SNRs in the initial 2000 years of
their evolution. During this time, the efficiency to accelerate cosmic
rays is highest. We perform time-dependent simulations of the
hydrodynamics, the magnetic fields, the cosmic-ray acceleration, and the
non-thermal emission for type Ia, Ic and IIP SNRs. We calculate the CTA
response to the γ-ray emission from these SNRs for various ages
and distances, and we perform a realistic analysis of the simulated
data. We derive distance limits for the detectability and resolvability
of these SNR types at several ages. We test the ability of CTA to
reconstruct their morphological and spectral parameters as a function of
their distance. Finally, we estimate how well CTA data will constrain
the theoretical models.
Related projects
Particle Astrophysics
The MAGIC Collaboration is integrated by 20 research institutes and university departments from Armenia, Bulgaria, Finland, Germany, Italy, Poland, Spain, Switzerland and USA. The collaboration comprises two 17m diameter telescopes, located at the Roque de los Muchachos Observatory, designed to measure the Cherenkov radiation associated with
Ramón
García López