Bibcode
Beck, C.; Rezaei, R.; Puschmann, K. G.
Bibliographical reference
Astronomy and Astrophysics, Volume 556, id.A127, 10 pp.
Advertised on:
8
2013
Journal
Citations
15
Refereed citations
14
Description
Context. Recently, a possible identification of type II spicules in
broad-band (full-width at half-maximum (FWHM) of ~0.3 nm) filter imaging
data in Ca ii H on the solar disc was reported. Aims: We estimate
the formation height range contributing to broad-band and narrow-band
filter imaging data in Ca ii H to investigate whether spicules can be
detected in such observations at the centre of the solar disc.
Methods: We applied spectral filters of FWHMs from 0.03 nm to 1 nm to
observed Ca ii H line profiles to simulate Ca imaging data. We used
observations across the limb to estimate the relative intensity
contributions of off-limb and on-disc structures. We compared the
synthetic Ca filter imaging data with intensity maps of Ca spectra at
different wavelengths and temperature maps at different optical depths
obtained by an inversion of these spectra. In addition, we determined
the intensity response function for the wavelengths covered by the
filters of different FWHM. Results: In broad-band (FWHM = 0.3 nm)
Ca imaging data, the intensity emitted off the solar limb is about 5% of
the intensity at disc centre. For a 0.3-nm-wide filter centred at the Ca
ii H line core, up to about one third of the off-limb intensity comes
from emission in Hɛ. On the disc, only about 10 to 15% of the
intensity transmitted through a broad-band filter comes from the
line-core region between the H1 minima (396.824 to 396.874
nm). No traces of elongated fibrillar structures are visible in the
synthetic Ca broad-band imaging data at disc centre, in contrast to the
line-core images of the Ca spectra. The intensity-weighted response
function for a 0.3-nm-wide filter centred at the Ca ii H line core peaks
at about log τ ~ -2 (z ~ 200 km). Relative contributions from
atmospheric layers above 800 km are about 10%. The inversion results
suggest that the slightly enhanced emission around the photospheric
magnetic network in broad-band Ca imaging data is caused by a thermal
canopy at a height of about 600 km. Conclusions: Broad-band (~0.3
nm) Ca ii H imaging data do not trace upper chromospheric structures
such as spicules in observations at the solar disc because of the too
small relative contribution of the line core to the total
wavelength-integrated filter intensity. The faint haze around network
elements in broad-band Ca imaging observations at disc centre presumably
traces thermal canopies in the vicinity of magnetic flux concentrations
instead.
Appendix A is available in electronic form at http://www.aanda.org
Related projects
Solar and Stellar Magnetism
Magnetic fields are at the base of star formation and stellar structure and evolution. When stars are born, magnetic fields brake the rotation during the collapse of the mollecular cloud. In the end of the life of a star, magnetic fields can play a key role in the form of the strong winds that lead to the last stages of stellar evolution. During
Tobías
Felipe García