Beryllium abundances in stars with planets. Extending the sample

Gálvez-Ortiz, M. C.; Delgado-Mena, E.; González Hernández, J. I.; Israelian, G.; Santos, N. C.; Rebolo, R.; Ecuvillon, A.
Bibliographical reference

Astronomy and Astrophysics, Volume 530, id.A66

Advertised on:
6
2011
Number of authors
7
IAC number of authors
5
Citations
11
Refereed citations
9
Description
Context. Chemical abundances of light elements such as beryllium in planet-host stars allow us to study the planet formation scenarios and/or investigate possible surface pollution processes. Aims: We present here an extension of previous beryllium abundance studies. The complete sample consists of 70 stars that host planets and 30 stars without known planetary companions. The aim of this paper is to further assess the trends found in previous studies with fewer objects. This will provide more information on the processes of depletion and mixing of light elements in the interior of late-type stars, and will provide possible explanations for the abundance differences between stars that host planets and "single" stars. Methods: Using high-resolution UVES spectra, we measure beryllium abundances of 26 stars that host planets and one "single" star mainly using the λ 3131.065 Å Be ii line, by fitting synthetic spectra to the observational data. We also compile beryllium abundance measurements of 44 stars hosting planets and 29 "single" stars from the literature, resulting in a final sample of 100 objects. Results: We confirm that the beryllium content is roughly the same in stars hosting planets and in "single" stars at temperatures Teff ≳ 5700 K. The sample is still small for Teff ≲ 5500 K, but it seems that the scatter in Be abundances of dwarf stars is slightly higher at these cooler temperatures. Conclusions: We search for distinctive characteristics of planet hosts through correlations of Be abundance versus Li abundance, age, metallicity, and oxygen abundance. These could provide some insight into the formation and evolution of planetary systems, but we did not find any clear correlation. Based on observations obtained with UVES at VLT Kueyen 8.2 m telescope in programme 074.C-0134(A).
Related projects
Project Image
Observational Tests of the Processes of Nucleosynthesis in the Universe
Several spectroscopic analyses of stars with planets have recently been carried out. One of the most remarkable results is that planet-harbouring stars are on average more metal-rich than solar-type disc stars. Two main explanations have been suggested to link this metallicity excess with the presence of planets. The first of these, the “self
Garik
Israelian