Bayesian evidence for two slow-wave damping models in hot coronal loops

Arregui, I.; Kolotkov, D. Y.; Nakariakov, V. M.
Bibliographical reference

Astronomy and Astrophysics

Advertised on:
8
2023
Number of authors
3
IAC number of authors
1
Citations
2
Refereed citations
2
Description
We computed the evidence in favour of two models, one based on field-aligned thermal conduction alone and another that includes thermal misbalance as well, to explain the damping of slow magneto-acoustic waves in hot coronal loops. Our analysis is based on the computation of the marginal likelihood and the Bayes factor for the two damping models. We quantified their merit to explain the apparent relationship between slow mode periods and damping times, measured with SOHO/SUMER in a set of hot coronal loops. The results indicate evidence in favour of the model with thermal misbalance in the majority of the sample, with a small population of loops for which thermal conduction alone is more plausible. The apparent possibility of two different regimes of slow-wave damping, if due to differences between the loops of host active regions and/or the photospheric dynamics, may help to reveal the coronal heating mechanism.
Related projects
Project Image
Solar and Stellar Magnetism
Magnetic fields are at the base of star formation and stellar structure and evolution. When stars are born, magnetic fields brake the rotation during the collapse of the mollecular cloud. In the end of the life of a star, magnetic fields can play a key role in the form of the strong winds that lead to the last stages of stellar evolution. During
Tobías
Felipe García
Solar Eruption
Numerical Simulation of Astrophysical Processes
Numerical simulation through complex computer codes has been a fundamental tool in physics and technology research for decades. The rapid growth of computing capabilities, coupled with significant advances in numerical mathematics, has made this branch of research accessible to medium-sized research centers, bridging the gap between theoretical and
Daniel Elías
Nóbrega Siverio