Bibcode
Livingston, J. H.; Endl, Michael; Dai, Fei; Cochran, William D.; Barragan, Oscar; Gandolfi, Davide; Hirano, Teruyuki; Grziwa, Sascha; Smith, Alexis M. S.; Albrecht, Simon; Cabrera, Juan; Csizmadia, Szilard; de Leon, Jerome P.; Deeg, H.; Eigmüller, Philipp; Erikson, Anders; Everett, Mark; Fridlund, Malcolm; Fukui, A.; Guenther, Eike W.; Hatzes, Artie P.; Howell, Steve; Korth, Judith; Narita, Norio; Nespral, D.; Nowak, G.; Palle, E.; Pätzold, Martin; Persson, Carina M.; Prieto-Arranz, J.; Rauer, Heike; Tamura, Motohide; Van Eylen, Vincent; Winn, Joshua N.
Bibliographical reference
The Astronomical Journal, Volume 156, Issue 2, article id. 78, 22 pp. (2018).
Advertised on:
8
2018
Citations
57
Refereed citations
52
Description
We present 44 validated planets from the 10th observing campaign of the
NASA K2 mission, as well as high-resolution spectroscopy and speckle
imaging follow-up observations. These 44 planets come from an initial
set of 72 vetted candidates, which we subjected to a validation process
incorporating pixel-level analyses, light curve analyses, observational
constraints, and statistical false positive probabilities. Our validated
planet sample has median values of {R}p = 2.2 {R}\oplus
, P orb = 6.9 days, {T}eq} = 890 K, and J =
11.2 mag. Of particular interest are four ultra-short period planets
({P}orb}≲ 1 day), 16 planets smaller than 2
{R}\oplus , and two planets with large predicted amplitude
atmospheric transmission features orbiting infrared-bright stars. We
also present 27 planet candidates, most of which are likely to be real
and worthy of further observations. Our validated planet sample includes
24 new discoveries and has enhanced the number of currently known
super-Earths ({R}p ≈ 1-2{R}\oplus ),
sub-Neptunes ({R}p ≈ 2-4{R}\oplus ), and
sub-Saturns ({R}p ≈ 4-8{R}\oplus )
orbiting bright stars (J = 8-10 mag) by ˜4%, ˜17%, and
˜11%, respectively.
Related projects
Exoplanets and Astrobiology
The search for life in the universe has been driven by recent discoveries of planets around other stars (known as exoplanets), becoming one of the most active fields in modern astrophysics. The growing number of new exoplanets discovered in recent years and the recent advance on the study of their atmospheres are not only providing new valuable
Enric
Pallé Bago