In August 2006 a new planetary transit was discovered from data from the TrES network. The discovery was confirmed using radial velocity curves obtained with the Keck and characterised with light curves in different filters obtained using two telescopes at the Observatorio del Teide: "IAC80" and "TELAST" (the first result of scientific interest obtained from the latter). The planet discovered, TrES-2, is more massive and somewhat larger than its quasi-homonym TrES-1 (the first exoplanet discovered using the transit method), and follows the expected patterns for this type of object. Its main importance is that it is the first object discovered in the area of observation of the future Kepler satellite, which will be able to track it in a degree of detail never before achieved.
Light curves of TRES_2 obtained using telescopes of the network and with two telescopes from the Observatorio del Teide: "IAC-80" and "TELAST" with different filters.
Advertised on
It may interest you
-
Observations made with the James Webb Space Telescope (JWST) have revealed a larger-than-expected number of massive galaxies when the Universe was still young. The focus of this study is precisely one of these galaxies, ZF-UDS-7329. It is a very compact object, and its spectrum suggests that it formed at a very early stage, when the Universe was around 2 billion years old. According to theoretical predictions, these objects first formed a generation of stars at the center of their dark matter halos and subsequently grew by merging with other halos. However, due to the random nature of theseAdvertised on
-
The formation and evolution of the disk of our Galaxy, the Milky Way, remains an enigma in astronomy. In particular, the relationship between the thick disk and the thin disk —two key components of the Milky Way— is still unclear. Understanding the chemical and dynamical properties of the stars within these disks is crucial, especially in the parameter spaces where their characteristics overlap, such the metallicity regime around [Fe/H] ~ -0.7, which marks the metal-poor end of the thin disk, higher than that of the thick disk. This is often interpreted as an indication that the thin diskAdvertised on
-
The development of the latest generation of Imaging Atmospheric Cherenkov Telescopes (IACTs) over recent decades has led to the discovery of new extreme astrophysical phenomena in the very-high-energy (VHE, E > 100 GeV) gamma-ray regime. Time-domain and multi-messenger astronomy are inevitably connected to the physics of transient VHE emitters, which show unexpected (and mostly unpredictable) flaring or exploding episodes at different timescales. These transients often share the physical processes responsible for the production of the gamma-ray emission, through cosmic-ray accelerationAdvertised on