Feedback-driven winds from star formation or active galactic nuclei might be a relevant channel for the abrupt quenching of star formation in massive galaxies. However, both observations and simulations support the idea that these processes are non-conflictingly co-evolving and self-regulating. Furthermore, evidence of disruptive events that are capable of fast quenching is rare, and constraints on their statistical prevalence are lacking. Here we present a massive starburst galaxy at redshift z=1.4, which is ejecting ~46% of its molecular gas mass at a startling rate of >10,000 solar masses per year. A broad component that is red-shifted from the galaxy emission is detected in four (low and high J) CO and [C I] transitions and in the ionized phase, which ensures a robust estimate of the expelled gas mass. The implied statistics suggest that similar events are potentially a major star-formation quenching channel. However, our observations provide compelling evidence that this is not a feedback-driven wind, but rather material from a merger that has been probably tidally ejected. This finding challenges some literature studies in which the role of feedback-driven winds might be overstated.
It may interest you
-
Type 2 quasars (QSO2s) are active galactic nuclei (AGN) seen through a significant amount of dust and gas that obscures the central supermassive black hole and the broad-line region. Here, we present new mid-infrared spectra of the central kiloparsec of five optically selected QSO2s at redshift z ∼ 0.1 obtained with the Medium Resolution Spectrometer module of the Mid-Infrared Instrument (MIRI) aboard the James Webb Space Telescope (JWST). These QSO2s belong to the Quasar Feedback (QSOFEED) sample, and they have bolometric luminosities of log L bol = 45.5 to 46.0 erg s −1 , global starAdvertised on
-
The Instituto de Astrofísica de Canarias (IAC) has successfully completed the integration of the scientific detector into the FRIDA (inFRared Imager and Dissector for Adaptive Optics) instrument, an integra-field camera and spectrograph designed to work with the adaptive optics system of the Gran Telescopio Canarias (GTC or Grantecan), the world's largest optical and infrared telescope, located at the Roque de los Muchachos Observatory in La Palma. The integration was carried out in the laboratories of the National Autonomous University of Mexico (UNAM) in Mexico City by a team from the IACAdvertised on
-
The largest observation program of the James Webb Space Telescope (JWST) has released its data: nearly 800,000 galaxies observed in unprecedented detail. COSMOS-Web thus offers the most extensive and deepest view of the universe ever obtained. In this data release, the Instituto de Astrofísica de Canarias (IAC) has played a key role, performing the morphological classification of more than half a million galaxies using neural networks, a crucial contribution to explore how galaxies form and evolve over cosmic time. COSMOS-Web was the largest General Observer program selected for Cycle 1 ofAdvertised on