Low− and intermediate-mass (0.8 < M < 8 solar mass) stars constitute most of the stars in the Universe and they end their lives with a phase of strong mass loss and thermal pulses (TP) on the Asymptotic Giant Branch (AGB). AGB stars are fundamental to understand the chemical evolution of galaxies because they are one of the main contributors to the chemical enrichment (e.g. C, N, Li, F, and s-process elements) of the interstellar medium where new stars and planets born. In particular, the more massive (>4-5 solar mass) AGB stars experience Hot Bottom Burning (HBB), i.e. proton-capture nucleosynthesis at the base of the outer envelope that favors the conversion of C to N by the CN-cycle and reconversion of the C-rich to an O-rich atmosphere, by which great amounts of Li can be produced in the surface regions. Interestingly, HBB models predict that massive AGB stars experience a super Li-rich phase (log ε(Li) ~ 4 or approximately 1000 times solar) at the beginning of the TP phase. Yet, to date, no super Li-rich massive Galactic AGB stars have been unambiguously identified. In this work we report the first detections of super Li-rich massive AGB stars in our Galaxy. The extreme Li overabundances (~100-1000 times solar) found together with the lack of s-process element (i.e. Rb and Zr) enhancements are consistent with these stars being truly massive O-rich AGB stars at the beginning of the TP phase. A comparison of our observations with the most recent HBB and s-process nucleosynthesis models confirms that HBB is strongly activated during the first TPs but the 22Ne neutron source needs many more TP and third dredge-up episodes to produce enough Rb at the stellar surface. We also show that the short-lived element Tc, usually used as an indicator of AGB genuineness, is not detected in massive AGBs, which is in agreement with the theoretical predictions when the 22Ne neutron source dominates the s-process nucleosynthesis.
Advertised on
References
2013, García-Hernández et al. , A&A, 555, L3
It may interest you
-
The transient Swift J1727.8-162 is the latest member of the X-ray binary black hole family to be discovered. They are formed by a black hole and a low-mass star whose gas is stripped off and accreted to the black hole via an accretion disc. The high temperature of the accretion disc makes it shine in all energy bands up to X-rays, and is particularly bright during epochs known as outbursts. In this novel study, published just a few months after the discovery of the system, we present 20 epochs of optical spectroscopy obtained with the GTC-10.4m telescope. The spectra cover the main accretionAdvertised on
-
The universality of the stellar initial mass function (IMF) is one of the most widespread assumptions in modern Astronomy and yet, it might be flawed. While observations in the Milky Way generally support an IMF that is invariant with respect to the local conditions under which stars form, measurements of massive early-type galaxies systematically point towards a non-universal IMF. To bridge the gap between both sets of evidence, in this work we measured for the first time the low-mass end of the IMF from the integrated spectra of a Milky Way-like galaxy, NGC3351. We found that the slope ofAdvertised on
-
The hierarchical model of galaxy evolution suggests that mergers have a substantial impact on the intricate processes that drive stellar assembly within a galaxy. However, accurately measuring the contribution of accretion to a galaxy's total stellar mass and its balance with in situ star formation poses a persistent challenge, as it is neither directly observable nor easily inferred from observational properties. Using data from MaNGA, we present theory-motivated predictions for the fraction of stellar mass originating from mergers in a statistically significant sample of nearby galaxiesAdvertised on