Low− and intermediate-mass (0.8 < M < 8 solar mass) stars constitute most of the stars in the Universe and they end their lives with a phase of strong mass loss and thermal pulses (TP) on the Asymptotic Giant Branch (AGB). AGB stars are fundamental to understand the chemical evolution of galaxies because they are one of the main contributors to the chemical enrichment (e.g. C, N, Li, F, and s-process elements) of the interstellar medium where new stars and planets born. In particular, the more massive (>4-5 solar mass) AGB stars experience Hot Bottom Burning (HBB), i.e. proton-capture nucleosynthesis at the base of the outer envelope that favors the conversion of C to N by the CN-cycle and reconversion of the C-rich to an O-rich atmosphere, by which great amounts of Li can be produced in the surface regions. Interestingly, HBB models predict that massive AGB stars experience a super Li-rich phase (log ε(Li) ~ 4 or approximately 1000 times solar) at the beginning of the TP phase. Yet, to date, no super Li-rich massive Galactic AGB stars have been unambiguously identified. In this work we report the first detections of super Li-rich massive AGB stars in our Galaxy. The extreme Li overabundances (~100-1000 times solar) found together with the lack of s-process element (i.e. Rb and Zr) enhancements are consistent with these stars being truly massive O-rich AGB stars at the beginning of the TP phase. A comparison of our observations with the most recent HBB and s-process nucleosynthesis models confirms that HBB is strongly activated during the first TPs but the 22Ne neutron source needs many more TP and third dredge-up episodes to produce enough Rb at the stellar surface. We also show that the short-lived element Tc, usually used as an indicator of AGB genuineness, is not detected in massive AGBs, which is in agreement with the theoretical predictions when the 22Ne neutron source dominates the s-process nucleosynthesis.
Advertised on
References
2013, García-Hernández et al. , A&A, 555, L3
It may interest you
-
The formation and evolution of the disk of our Galaxy, the Milky Way, remains an enigma in astronomy. In particular, the relationship between the thick disk and the thin disk —two key components of the Milky Way— is still unclear. Understanding the chemical and dynamical properties of the stars within these disks is crucial, especially in the parameter spaces where their characteristics overlap, such the metallicity regime around [Fe/H] ~ -0.7, which marks the metal-poor end of the thin disk, higher than that of the thick disk. This is often interpreted as an indication that the thin diskAdvertised on
-
CaII Kgrains, i.e., intermittent, short-lived (about 1 minute), periodic (2-4 minutes), pointlike chromospheric brightenings, are considered to be the manifestations of acoustic waves propagating upward from the solar surface and developing into shocks in the chromosphere. After the simulations of Carlsson and Stein, we know that hot shocked gas moving upward interacting with the downflowing chromospheric gas (falling down after having been displaced upward by a previous shock) nicely reproduces the spectral features of the CaII K profiles observed in such grains, i.e., a narrowband emissionAdvertised on
-
The cosmic evolution of the barred galaxy population provides key information about the secular evolution of galaxies and the settling of rotationally dominated discs. We study the bar fraction in the SMACSJ0723.37323 (SMACS0723) cluster of galaxies at z = 0.39 using the Early Release Observations obtained with the NIRCam instrument mounted on the JWST telescope. We visually inspected all cluster member galaxies using the images from the NIRCam F200W filter. We classified the galaxies into ellipticals and discs and determine the presence of a bar. The cluster member selection was based on aAdvertised on