The abundance ratios between key elements such as iron and α-process elements carry a wealth of information on the star formation history (SFH) of galaxies. So far, simple chemical evolution models have linked [α/Fe ] with the SFH time-scale, correlating large abundance ratios with short-lived SFH. The incorporation of full spectral fitting to the analysis of stellar populations allows for a more quantitative constraint between [α/Fe ] and the SFH. In this letter, we provide, for the first time, an empirical correlation between [α/Fe ] (measured from spectral indices) and the SFH (determined via a non-parametric spectral-fitting method). We offer an empirical version of the iconic outline of Thomas et al., relating star formation time-scale with galaxy mass, although our results suggest, in contrast, a significant population of old (≳10 Gyr) stars even for the lowest mass ellipticals (M/dyn ˜ 3 × 1010 Msun). In addition, the abundance ratio is found to be strongly correlated with the time to build up the stellar component, showing that the highest [α/Fe ] (≳+0.2) are attained by galaxies with the shortest half-mass formation time (≲2 Gyr), or equivalently, with the smallest (≲40 per cent) fraction of populations younger than 10 Gyr. These observational results support the standard hypothesis that star formation incorporates the Fe-enriched interstellar medium into stars, lowering the high abundance ratio of the old populations.
Advertised on
References
It may interest you
-
The development of the latest generation of Imaging Atmospheric Cherenkov Telescopes (IACTs) over recent decades has led to the discovery of new extreme astrophysical phenomena in the very-high-energy (VHE, E > 100 GeV) gamma-ray regime. Time-domain and multi-messenger astronomy are inevitably connected to the physics of transient VHE emitters, which show unexpected (and mostly unpredictable) flaring or exploding episodes at different timescales. These transients often share the physical processes responsible for the production of the gamma-ray emission, through cosmic-ray accelerationAdvertised on
-
Despite the fundamental role that dark matter halos play in our theoretical understanding of galaxy formation and evolution, the interplay between galaxies and their host dark matter halos remains highly debated from an observational perspective. This lack of conclusive observational evidence ultimately arises from the inherent difficulty of reliably measuring dark matter (halo) properties. Based on detailed dynamical modeling of nearby galaxies, in this work we proposed a novel observational approach to quantify the potential effect that dark matter halos may have in modulating galaxyAdvertised on
-
The hierarchical model of galaxy evolution suggests that mergers have a substantial impact on the intricate processes that drive stellar assembly within a galaxy. However, accurately measuring the contribution of accretion to a galaxy's total stellar mass and its balance with in situ star formation poses a persistent challenge, as it is neither directly observable nor easily inferred from observational properties. Using data from MaNGA, we present theory-motivated predictions for the fraction of stellar mass originating from mergers in a statistically significant sample of nearby galaxiesAdvertised on