The ultra-deep multiwavelength Hubble Space Telescope Frontier Fields coverage of the Abell Cluster 2744 is used to derive the stellar population properties of its intracluster light (ICL). The restframe colors of the ICL of this intermediate redshift (z = 0.3064) massive cluster are bluer (g – r = 0.68 ± 0.04; i – J = 0.56 ± 0.01) than those found in the stellar populations of its main galaxy members (g – r = 0.83 ± 0.01; i – J = 0.75 ± 0.01). Based on these colors, we derive the following mean metallicity Z = 0.018 ± 0.007 for the ICL. The ICL age is 6 ± 3 Gyr younger than the average age of the most massive galaxies of the cluster. The fraction of stellar mass in the ICL component comprises at least 6% of the total stellar mass of the galaxy cluster. Our data are consistent with a scenario where the bulk of the ICL of A2744 has been formed relatively recently (z < 1). The stellar population properties of the ICL suggest that this diffuse component is mainly the result of the disruption of infalling galaxies with similar characteristics in mass (M*~ 3 × 10^10 Msolar) and metallicity than our own Milky Way. The amount of ICL mass in the central part of the cluster (<400 kpc) is equivalent to the disruption of 4-6 Milky-Way-type galaxies.
Advertised on
References
It may interest you
-
Asteroids are the remnants of the planetary formation in the Solar System and so, their study helps us to understand the conditions during the early stages of the formation of our planetary system. Among asteroids, those classified as primitives present similar spectra to that of carbonaceous chondrites, i.e., they are rich in carbon and organic compounds and silicates altered by the presence of liquid water (phyllosilicates). Primitive asteroids are well characterized in various wavelength regions, showing their most diagnostic feature at 3μm. However, there is a lack of information in theAdvertised on
-
Massive stars, those over ten times heavier than our Sun, are the conduits of most elements of the periodic table and drive the morphological and chemical makeup of their host galaxies. Yet the origin of the most luminous and hottest stars among them, called 'blue supergiants', has been debated for many decades. Blue supergiants are strange stars. First, they are observed in large numbers, despite conventional stellar physics expecting them to live only briefly. Second, they are typically found alone, despite most massive stars being born with companions. Third, the majority of them harbourAdvertised on
-
Recent observational studies suggest that feedback from active galactic nuclei (AGNs)—the energetic centres powered by supermassive black holes—may play an important role in the formation and evolution of dwarf galaxies, contrary to the standard thought. We investigated this using two sets of 12 cosmological magnetohydrodynamic simulations of the formation of dwarf galaxies: one set using a version of the AURIGA galaxy formation physics model including AGN feedback and a parallel set with AGN feedback turned off. Our results reveal that AGNs can suppress the star formation (SF) of dwarfAdvertised on