Inteligencia artificial para estudiar el Sol

El panel superior muestra las diferentes velocidades horizontales a tres alturas distintas, mientras que el panel inferior muestra la velocidad de rotación vertical. Los círculos rojos, con 150 km de radio, muestran el tamaño del flujo de los vórtices peq
Advertised on

Muchos de los fenómenos que tienen lugar en la atmósfera solar están controlados por los movimientos del plasma, especialmente en la fotosfera, la capa superficial del Sol y visible a simple vista mediante grandes telescopios. Medir la velocidad del movimiento vertical es relativamente fácil gracias al efecto Doppler, que produce un desplazamiento de las líneas de su espectro proporcional a la velocidad. En cambio, medir cómo se mueve el plasma de forma paralela a la superficie es mucho más complicado porque en este caso el efecto Doppler no opera. Sin embargo, gracias a técnicas de inteligencia artificial, un equipo científico del IAC ha desarrollado un método –una red neuronal- capaz de medir ese movimiento horizontal automáticamente. Los resultados del estudio se han publicado recientemente en Astronomy & Astrophysics.

En Física Solar, se suelen medir estas velocidades tomando varias imágenes de la superficie del Sol y se compara cómo se mueven los gránulos de una imagen a la anterior. Es una forma bastante intuitiva y habitual de medir velocidades en la vida diaria. Por ejemplo, cuando queremos cruzar una calle, estimamos la velocidad a la que circula un coche para saber si podemos hacerlo comparando su posición en unos pocos segundos. El problema de aplicar este método en la superficie solar es que produce estimaciones poco detalladas y solo permite detectar movimientos de estructuras mayores de 1000 km y que se muevan durante un periodo largo de tiempo.

Para hacer un cálculo más preciso de las velocidades horizontales en la fotosfera, varios investigadores del Instituto de Astrofísica de Canarias (IAC) han desarrollado un método basado en el "aprendizaje profundo" (deep learning en inglés). Este conjunto de técnicas de inteligencia artificial se han utilizado para asuntos tan dispares como desarrollar una inteligencia artificial que juegue al conocido juego de mesa Go (AlphaGo), la conducción automática de coches o el diagnóstico de enfermedades. Ahora, por primera vez, se han aplicado estas técnicas en el Sol, y el equipo científico ha entrenado una red neuronal, “DeepVel”, capaz de calcular la velocidad en cada pixel de la imagen y para cada instante de tiempo a partir de dos fotos consecutivas. “La mejora con respecto a los métodos anteriores es tan grande –explica Andrés Asensio Ramos, investigador del IAC y primer autor del proyecto- que creemos que el aprendizaje profundo nos permitirá extraer mucha más información de las observaciones en diferentes campos de la Física Solar”.

Deep learning o aprendizaje profundo

El aprendizaje profundo es una de las de técnicas de aprendizaje automático que permite a los ordenadores aprender a resolver problemas por sí mismos. Consiste en desarrollar e implementar algoritmos matemáticos formados por piezas relativamente simples pero muy interconectadas que sirven como base para generalizar comportamientos. Los sistemas de aprendizaje profundo más usados son las redes neuronales profundas, que intentan imitar el comportamiento del cerebro humano y su gran conectividad. Cuando se introducen datos, estos algoritmos los tratan en múltiples capas (en forma de cascada) y se van adaptando hasta ser capaces de reconocer patrones en los datos de entrenamiento. A partir de ese momento, pueden aprender automáticamente a resolver problemas nuevos.

“DeepVel” es capaz de detectar en la atmósfera solar vórtices muy pequeños, de tan solo unos centenares de kilómetros de diámetro, y que pueden durar menos de un minuto. “Parecen estar relacionados con acumulaciones de campos magnéticos que aparecen en las zonas menos magnetizadas del Sol, es decir, en calma”, apunta Iker S. Requerey, científico del IAC durante el desarrollo de este trabajo y otro de los autores del mismo. Desde hace unos años se sabe que la contribución del magnetismo en estas zonas es muy importante, incluso más de lo que se creía, lo que puede afectar al calentamiento de la corona solar, la capa más externa de su atmósfera. “Con DeepVel podremos estudiar los vórtices en el futuro, caracterizarlos y ver si están relacionados con la concentración de campos magnéticos en la fotosfera”, concluye Nikola Vitas, astrofísico del IAC que también ha participado en este estudio.

Artículo: “DeepVel: deep learning for the estimation of horizontal velocities at the solar surface”, por A. Asensio Ramos, I. S. Requerey y N. Vitas. A. Asensio Ramos, I. S. Requerey and N. Vitas, 2017, A&A, 604, A11.

Artículo online: https://doi.org/10.1051/0004-6361/201730783

Contacto:

·         Andrés Asensio Ramos: aasensio [at] iac.es (aasensio[at]iac[dot]es) y 922 605 200 (+5417)

·         Nikola Vitas: nvitas [at] iac.es (nvitas[at]iac[dot]es)

·         Iker S. Requerey: requerey [at] mps.mpg.de (requerey[at]mps[dot]mpg[dot]de)

El IAC agradece a NVIDIA Corporation la cesión gratuita de una tarjeta gráfica para el cálculo intensivo que requirió el entrenamiento de esta red neuronal.